Relying on crowdsourced workers, data crowdsourcing platforms are able to efficiently provide vast amounts of labeled data. Due to the variability in the annotation quality of crowd workers, modern techniques resort to redundant annotations and subsequent label aggregation to infer true labels. However, these methods require model updating during the inference, posing challenges in real-world implementation. Meanwhile, in recent years, many data labeling tasks have begun to require skilled and experienced annotators, leading to an increasing demand for long-term annotators. These annotators could leave substantial historical annotation records on the crowdsourcing platforms, which can benefit label aggregation, but are ignored by previous works. Hereby, in this paper, we propose a novel label aggregation technique, which does not need any model updating during inference and can extensively explore the historical annotation records. We call it SuperLA, a Supervised Label Aggregation method. Inside this model, we design three types of input features and a straightforward neural network structure to merge all the information together and subsequently produce aggregated labels. Based on comparison experiments conducted on 22 public datasets and 11 baseline methods, we find that SuperLA not only outperforms all those baselines in inference performance but also offers significant advantages in terms of efficiency.