Abstract:We propose a sparse and privacy-enhanced representation for Human Pose Estimation (HPE). Given a perspective camera, we use a proprietary motion vector sensor(MVS) to extract an edge image and a two-directional motion vector image at each time frame. Both edge and motion vector images are sparse and contain much less information (i.e., enhancing human privacy). We advocate that edge information is essential for HPE, and motion vectors complement edge information during fast movements. We propose a fusion network leveraging recent advances in sparse convolution used typically for 3D voxels to efficiently process our proposed sparse representation, which achieves about 13x speed-up and 96% reduction in FLOPs. We collect an in-house edge and motion vector dataset with 16 types of actions by 40 users using the proprietary MVS. Our method outperforms individual modalities using only edge or motion vector images. Finally, we validate the privacy-enhanced quality of our sparse representation through face recognition on CelebA (a large face dataset) and a user study on our in-house dataset.
Abstract:We propose a content-based system for matching video and background music. The system aims to address the challenges in music recommendation for new users or new music give short-form videos. To this end, we propose a cross-modal framework VMCML that finds a shared embedding space between video and music representations. To ensure the embedding space can be effectively shared by both representations, we leverage CosFace loss based on margin-based cosine similarity loss. Furthermore, we establish a large-scale dataset called MSVD, in which we provide 390 individual music and the corresponding matched 150,000 videos. We conduct extensive experiments on Youtube-8M and our MSVD datasets. Our quantitative and qualitative results demonstrate the effectiveness of our proposed framework and achieve state-of-the-art video and music matching performance.
Abstract:Although significant progress has been made in face recognition, demographic bias still exists in face recognition systems. For instance, it usually happens that the face recognition performance for a certain demographic group is lower than the others. In this paper, we propose MixFairFace framework to improve the fairness in face recognition models. First of all, we argue that the commonly used attribute-based fairness metric is not appropriate for face recognition. A face recognition system can only be considered fair while every person has a close performance. Hence, we propose a new evaluation protocol to fairly evaluate the fairness performance of different approaches. Different from previous approaches that require sensitive attribute labels such as race and gender for reducing the demographic bias, we aim at addressing the identity bias in face representation, i.e., the performance inconsistency between different identities, without the need for sensitive attribute labels. To this end, we propose MixFair Adapter to determine and reduce the identity bias of training samples. Our extensive experiments demonstrate that our MixFairFace approach achieves state-of-the-art fairness performance on all benchmark datasets.
Abstract:Due to the rise of spherical cameras, monocular 360 depth estimation becomes an important technique for many applications (e.g., autonomous systems). Thus, state-of-the-art frameworks for monocular 360 depth estimation such as bi-projection fusion in BiFuse are proposed. To train such a framework, a large number of panoramas along with the corresponding depth ground truths captured by laser sensors are required, which highly increases the cost of data collection. Moreover, since such a data collection procedure is time-consuming, the scalability of extending these methods to different scenes becomes a challenge. To this end, self-training a network for monocular depth estimation from 360 videos is one way to alleviate this issue. However, there are no existing frameworks that incorporate bi-projection fusion into the self-training scheme, which highly limits the self-supervised performance since bi-projection fusion can leverage information from different projection types. In this paper, we propose BiFuse++ to explore the combination of bi-projection fusion and the self-training scenario. To be specific, we propose a new fusion module and Contrast-Aware Photometric Loss to improve the performance of BiFuse and increase the stability of self-training on real-world videos. We conduct both supervised and self-supervised experiments on benchmark datasets and achieve state-of-the-art performance.
Abstract:Although significant progress has been made in room layout estimation, most methods aim to reduce the loss in the 2D pixel coordinate rather than exploiting the room structure in the 3D space. Towards reconstructing the room layout in 3D, we formulate the task of 360 layout estimation as a problem of predicting depth on the horizon line of a panorama. Specifically, we propose the Differentiable Depth Rendering procedure to make the conversion from layout to depth prediction differentiable, thus making our proposed model end-to-end trainable while leveraging the 3D geometric information, without the need of providing the ground truth depth. Our method achieves state-of-the-art performance on numerous 360 layout benchmark datasets. Moreover, our formulation enables a pre-training step on the depth dataset, which further improves the generalizability of our layout estimation model.
Abstract:Inferring the information of 3D layout from a single equirectangular panorama is crucial for numerous applications of virtual reality or robotics (e.g., scene understanding and navigation). To achieve this, several datasets are collected for the task of 360 layout estimation. To facilitate the learning algorithms for autonomous systems in indoor scenarios, we consider the Matterport3D dataset with their originally provided depth map ground truths and further release our annotations for layout ground truths from a subset of Matterport3D. As Matterport3D contains accurate depth ground truths from time-of-flight (ToF) sensors, our dataset provides both the layout and depth information, which enables the opportunity to explore the environment by integrating both cues.
Abstract:We present a deep learning framework, called DuLa-Net, to predict Manhattan-world 3D room layouts from a single RGB panorama. To achieve better prediction accuracy, our method leverages two projections of the panorama at once, namely the equirectangular panorama-view and the perspective ceiling-view, that each contains different clues about the room layouts. Our network architecture consists of two encoder-decoder branches for analyzing each of the two views. In addition, a novel feature fusion structure is proposed to connect the two branches, which are then jointly trained to predict the 2D floor plans and layout heights. To learn more complex room layouts, we introduce the Realtor360 dataset that contains panoramas of Manhattan-world room layouts with different numbers of corners. Experimental results show that our work outperforms recent state-of-the-art in prediction accuracy and performance, especially in the rooms with non-cuboid layouts.
Abstract:As 360{\deg} cameras become prevalent in many autonomous systems (e.g., self-driving cars and drones), efficient 360{\deg} perception becomes more and more important. We propose a novel self-supervised learning approach for predicting the omnidirectional depth and camera motion from a 360{\deg} video. In particular, starting from the SfMLearner, which is designed for cameras with normal field-of-view, we introduce three key features to process 360{\deg} images efficiently. Firstly, we convert each image from equirectangular projection to cubic projection in order to avoid image distortion. In each network layer, we use Cube Padding (CP), which pads intermediate features from adjacent faces, to avoid image boundaries. Secondly, we propose a novel "spherical" photometric consistency constraint on the whole viewing sphere. In this way, no pixel will be projected outside the image boundary which typically happens in images with normal field-of-view. Finally, rather than naively estimating six independent camera motions (i.e., naively applying SfM-Learner to each face on a cube), we propose a novel camera pose consistency loss to ensure the estimated camera motions reaching consensus. To train and evaluate our approach, we collect a new PanoSUNCG dataset containing a large amount of 360{\deg} videos with groundtruth depth and camera motion. Our approach achieves state-of-the-art depth prediction and camera motion estimation on PanoSUNCG with faster inference speed comparing to equirectangular. In real-world indoor videos, our approach can also achieve qualitatively reasonable depth prediction by acquiring model pre-trained on PanoSUNCG.