Abstract:Recently, diffusion-based blind super-resolution (SR) methods have shown great ability to generate high-resolution images with abundant high-frequency detail, but the detail is often achieved at the expense of fidelity. Meanwhile, another line of research focusing on rectifying the reverse process of diffusion models (i.e., diffusion guidance), has demonstrated the power to generate high-fidelity results for non-blind SR. However, these methods rely on known degradation kernels, making them difficult to apply to blind SR. To address these issues, we introduce degradation-aware models that can be integrated into the diffusion guidance framework, eliminating the need to know degradation kernels. Additionally, we propose two novel techniques input perturbation and guidance scalar to further improve our performance. Extensive experimental results show that our proposed method has superior performance over state-of-the-art methods on blind SR benchmarks
Abstract:Multimodal incremental learning needs to digest the information from multiple modalities while concurrently learning new knowledge without forgetting the previously learned information. There are numerous challenges for this task, mainly including the larger storage size of multimodal data in exemplar-based methods and the computational requirement of finetuning on huge multimodal models. In this paper, we leverage the parameter-efficient tuning scheme to reduce the burden of fine-tuning and propose the exemplar masking framework to efficiently replay old knowledge. Specifically, the non-important tokens are masked based on the attention weights and the correlation across different modalities, significantly reducing the storage size of an exemplar and consequently saving more exemplars under the same memory buffer. Moreover, we design a multimodal data augmentation technique to diversify exemplars for replaying prior knowledge. In experiments, we not only evaluate our method in existing multimodal datasets but also extend the ImageNet-R dataset to a multimodal dataset as a real-world application, where captions are generated by querying multimodal large language models (e.g., InstructBLIP). Extensive experiments show that our exemplar masking framework is more efficient and robust to catastrophic forgetting under the same limited memory buffer. Code is available at https://github.com/YiLunLee/Exemplar_Masking_MCIL.
Abstract:While large vision-language models (LVLMs) have shown impressive capabilities in generating plausible responses correlated with input visual contents, they still suffer from hallucinations, where the generated text inaccurately reflects visual contents. To address this, recent approaches apply contrastive decoding to calibrate the model's response via contrasting output distributions with original and visually distorted samples, demonstrating promising hallucination mitigation in a training-free manner. However, the potential of changing information in visual inputs is not well-explored, so a deeper investigation into the behaviors of visual contrastive decoding is of great interest. In this paper, we first explore various methods for contrastive decoding to change visual contents, including image downsampling and editing. Downsampling images reduces the detailed textual information while editing yields new contents in images, providing new aspects as visual contrastive samples. To further study benefits by using different contrastive samples, we analyze probability-level metrics, including entropy and distribution distance. Interestingly, the effect of these samples in mitigating hallucinations varies a lot across LVLMs and benchmarks. Based on our analysis, we propose a simple yet effective method to combine contrastive samples, offering a practical solution for applying contrastive decoding across various scenarios. Extensive experiments are conducted to validate the proposed fusion method among different benchmarks.
Abstract:Text-to-image (T2I) models have shown remarkable progress, but their potential to generate harmful content remains a critical concern in the ML community. While various safety mechanisms have been developed, the field lacks systematic tools for evaluating their effectiveness against real-world misuse scenarios. In this work, we propose ICER, a novel red-teaming framework that leverages Large Language Models (LLMs) and a bandit optimization-based algorithm to generate interpretable and semantic meaningful problematic prompts by learning from past successful red-teaming attempts. Our ICER efficiently probes safety mechanisms across different T2I models without requiring internal access or additional training, making it broadly applicable to deployed systems. Through extensive experiments, we demonstrate that ICER significantly outperforms existing prompt attack methods in identifying model vulnerabilities while maintaining high semantic similarity with intended content. By uncovering that successful jailbreaking instances can systematically facilitate the discovery of new vulnerabilities, our work provides crucial insights for developing more robust safety mechanisms in T2I systems.
Abstract:The recent development of Video-based Large Language Models (VideoLLMs), has significantly advanced video summarization by aligning video features and, in some cases, audio features with Large Language Models (LLMs). Each of these VideoLLMs possesses unique strengths and weaknesses. Many recent methods have required extensive fine-tuning to overcome the limitations of these models, which can be resource-intensive. In this work, we observe that the strengths of one VideoLLM can complement the weaknesses of another. Leveraging this insight, we propose a novel video summarization framework inspired by the Mixture of Experts (MoE) paradigm, which operates as an inference-time algorithm without requiring any form of fine-tuning. Our approach integrates multiple VideoLLMs to generate comprehensive and coherent textual summaries. It effectively combines visual and audio content, provides detailed background descriptions, and excels at identifying keyframes, which enables more semantically meaningful retrieval compared to traditional computer vision approaches that rely solely on visual information, all without the need for additional fine-tuning. Moreover, the resulting summaries enhance performance in downstream tasks such as summary video generation, either through keyframe selection or in combination with text-to-image models. Our language-driven approach offers a semantically rich alternative to conventional methods and provides flexibility to incorporate newer VideoLLMs, enhancing adaptability and performance in video summarization tasks.
Abstract:To address the risks of encountering inappropriate or harmful content, researchers managed to incorporate several harmful contents datasets with machine learning methods to detect harmful concepts. However, existing harmful datasets are curated by the presence of a narrow range of harmful objects, and only cover real harmful content sources. This hinders the generalizability of methods based on such datasets, potentially leading to misjudgments. Therefore, we propose a comprehensive harmful dataset, Visual Harmful Dataset 11K (VHD11K), consisting of 10,000 images and 1,000 videos, crawled from the Internet and generated by 4 generative models, across a total of 10 harmful categories covering a full spectrum of harmful concepts with nontrivial definition. We also propose a novel annotation framework by formulating the annotation process as a multi-agent Visual Question Answering (VQA) task, having 3 different VLMs "debate" about whether the given image/video is harmful, and incorporating the in-context learning strategy in the debating process. Therefore, we can ensure that the VLMs consider the context of the given image/video and both sides of the arguments thoroughly before making decisions, further reducing the likelihood of misjudgments in edge cases. Evaluation and experimental results demonstrate that (1) the great alignment between the annotation from our novel annotation framework and those from human, ensuring the reliability of VHD11K; (2) our full-spectrum harmful dataset successfully identifies the inability of existing harmful content detection methods to detect extensive harmful contents and improves the performance of existing harmfulness recognition methods; (3) VHD11K outperforms the baseline dataset, SMID, as evidenced by the superior improvement in harmfulness recognition methods. The complete dataset and code can be found at https://github.com/nctu-eva-lab/VHD11K.
Abstract:How can balance be quantified in game settings? This question is crucial for game designers, especially in player-versus-player (PvP) games, where analyzing the strength relations among predefined team compositions-such as hero combinations in multiplayer online battle arena (MOBA) games or decks in card games-is essential for enhancing gameplay and achieving balance. We have developed two advanced measures that extend beyond the simplistic win rate to quantify balance in zero-sum competitive scenarios. These measures are derived from win value estimations, which employ strength rating approximations via the Bradley-Terry model and counter relationship approximations via vector quantization, significantly reducing the computational complexity associated with traditional win value estimations. Throughout the learning process of these models, we identify useful categories of compositions and pinpoint their counter relationships, aligning with the experiences of human players without requiring specific game knowledge. Our methodology hinges on a simple technique to enhance codebook utilization in discrete representation with a deterministic vector quantization process for an extremely small state space. Our framework has been validated in popular online games, including Age of Empires II, Hearthstone, Brawl Stars, and League of Legends. The accuracy of the observed strength relations in these games is comparable to traditional pairwise win value predictions, while also offering a more manageable complexity for analysis. Ultimately, our findings contribute to a deeper understanding of PvP game dynamics and present a methodology that significantly improves game balance evaluation and design.
Abstract:Defining and measuring decision-making styles, also known as playstyles, is crucial in gaming, where these styles reflect a broad spectrum of individuality and diversity. However, finding a universally applicable measure for these styles poses a challenge. Building on Playstyle Distance, the first unsupervised metric to measure playstyle similarity based on game screens and raw actions, we introduce three enhancements to increase accuracy: multiscale analysis with varied state granularity, a perceptual kernel rooted in psychology, and the utilization of the intersection-over-union method for efficient evaluation. These innovations not only advance measurement precision but also offer insights into human cognition of similarity. Across two racing games and seven Atari games, our techniques significantly improve the precision of zero-shot playstyle classification, achieving an accuracy exceeding 90 percent with fewer than 512 observation-action pairs, which is less than half an episode of these games. Furthermore, our experiments with 2048 and Go demonstrate the potential of discrete playstyle measures in puzzle and board games. We also develop an algorithm for assessing decision-making diversity using these measures. Our findings improve the measurement of end-to-end game analysis and the evolution of artificial intelligence for diverse playstyles.
Abstract:Class agnostic counting (CAC) is a vision task that can be used to count the total occurrence number of any given reference objects in the query image. The task is usually formulated as a density map estimation problem through similarity computation among a few image samples of the reference object and the query image. In this paper, we point out a severe issue of the existing CAC framework: Given a multi-class setting, models don't consider reference images and instead blindly match all dominant objects in the query image. Moreover, the current evaluation metrics and dataset cannot be used to faithfully assess the model's generalization performance and robustness. To this end, we discover that the combination of mosaic augmentation with generalized loss is essential for addressing the aforementioned issue of CAC models to count objects of majority (i.e. dominant objects) regardless of the references. Furthermore, we introduce a new evaluation protocol and metrics for resolving the problem behind the existing CAC evaluation scheme and better benchmarking CAC models in a more fair manner. Besides, extensive evaluation results demonstrate that our proposed recipe can consistently improve the performance of different CAC models. The code will be released upon acceptance.
Abstract:Recent advancements in post-hoc and inherently interpretable methods have markedly enhanced the explanations of black box classifier models. These methods operate either through post-analysis or by integrating concept learning during model training. Although being effective in bridging the semantic gap between a model's latent space and human interpretation, these explanation methods only partially reveal the model's decision-making process. The outcome is typically limited to high-level semantics derived from the last feature map. We argue that the explanations lacking insights into the decision processes at low and mid-level features are neither fully faithful nor useful. Addressing this gap, we introduce the Multi-Level Concept Prototypes Classifier (MCPNet), an inherently interpretable model. MCPNet autonomously learns meaningful concept prototypes across multiple feature map levels using Centered Kernel Alignment (CKA) loss and an energy-based weighted PCA mechanism, and it does so without reliance on predefined concept labels. Further, we propose a novel classifier paradigm that learns and aligns multi-level concept prototype distributions for classification purposes via Class-aware Concept Distribution (CCD) loss. Our experiments reveal that our proposed MCPNet while being adaptable to various model architectures, offers comprehensive multi-level explanations while maintaining classification accuracy. Additionally, its concept distribution-based classification approach shows improved generalization capabilities in few-shot classification scenarios.