Abstract:Multimodal incremental learning needs to digest the information from multiple modalities while concurrently learning new knowledge without forgetting the previously learned information. There are numerous challenges for this task, mainly including the larger storage size of multimodal data in exemplar-based methods and the computational requirement of finetuning on huge multimodal models. In this paper, we leverage the parameter-efficient tuning scheme to reduce the burden of fine-tuning and propose the exemplar masking framework to efficiently replay old knowledge. Specifically, the non-important tokens are masked based on the attention weights and the correlation across different modalities, significantly reducing the storage size of an exemplar and consequently saving more exemplars under the same memory buffer. Moreover, we design a multimodal data augmentation technique to diversify exemplars for replaying prior knowledge. In experiments, we not only evaluate our method in existing multimodal datasets but also extend the ImageNet-R dataset to a multimodal dataset as a real-world application, where captions are generated by querying multimodal large language models (e.g., InstructBLIP). Extensive experiments show that our exemplar masking framework is more efficient and robust to catastrophic forgetting under the same limited memory buffer. Code is available at https://github.com/YiLunLee/Exemplar_Masking_MCIL.
Abstract:While large vision-language models (LVLMs) have shown impressive capabilities in generating plausible responses correlated with input visual contents, they still suffer from hallucinations, where the generated text inaccurately reflects visual contents. To address this, recent approaches apply contrastive decoding to calibrate the model's response via contrasting output distributions with original and visually distorted samples, demonstrating promising hallucination mitigation in a training-free manner. However, the potential of changing information in visual inputs is not well-explored, so a deeper investigation into the behaviors of visual contrastive decoding is of great interest. In this paper, we first explore various methods for contrastive decoding to change visual contents, including image downsampling and editing. Downsampling images reduces the detailed textual information while editing yields new contents in images, providing new aspects as visual contrastive samples. To further study benefits by using different contrastive samples, we analyze probability-level metrics, including entropy and distribution distance. Interestingly, the effect of these samples in mitigating hallucinations varies a lot across LVLMs and benchmarks. Based on our analysis, we propose a simple yet effective method to combine contrastive samples, offering a practical solution for applying contrastive decoding across various scenarios. Extensive experiments are conducted to validate the proposed fusion method among different benchmarks.
Abstract:In this paper, we tackle two challenges in multimodal learning for visual recognition: 1) when missing-modality occurs either during training or testing in real-world situations; and 2) when the computation resources are not available to finetune on heavy transformer models. To this end, we propose to utilize prompt learning and mitigate the above two challenges together. Specifically, our modality-missing-aware prompts can be plugged into multimodal transformers to handle general missing-modality cases, while only requiring less than 1% learnable parameters compared to training the entire model. We further explore the effect of different prompt configurations and analyze the robustness to missing modality. Extensive experiments are conducted to show the effectiveness of our prompt learning framework that improves the performance under various missing-modality cases, while alleviating the requirement of heavy model re-training. Code is available.