Abstract:In this paper, we highlight a critical yet often overlooked factor in most 3D human tasks, namely modeling humans with complex garments. It is known that the parameterized formulation of SMPL is able to fit human skin; while complex garments, e.g., hand-held objects and loose-fitting garments, are difficult to get modeled within the unified framework, since their movements are usually decoupled with the human body. To enhance the capability of SMPL skeleton in response to this situation, we propose a modular growth strategy that enables the joint tree of the skeleton to expand adaptively. Specifically, our method, called ToMiE, consists of parent joints localization and external joints optimization. For parent joints localization, we employ a gradient-based approach guided by both LBS blending weights and motion kernels. Once the external joints are obtained, we proceed to optimize their transformations in SE(3) across different frames, enabling rendering and explicit animation. ToMiE manages to outperform other methods across various cases with garments, not only in rendering quality but also by offering free animation of grown joints, thereby enhancing the expressive ability of SMPL skeleton for a broader range of applications.
Abstract:We introduce KFD-NeRF, a novel dynamic neural radiance field integrated with an efficient and high-quality motion reconstruction framework based on Kalman filtering. Our key idea is to model the dynamic radiance field as a dynamic system whose temporally varying states are estimated based on two sources of knowledge: observations and predictions. We introduce a novel plug-in Kalman filter guided deformation field that enables accurate deformation estimation from scene observations and predictions. We use a shallow Multi-Layer Perceptron (MLP) for observations and model the motion as locally linear to calculate predictions with motion equations. To further enhance the performance of the observation MLP, we introduce regularization in the canonical space to facilitate the network's ability to learn warping for different frames. Additionally, we employ an efficient tri-plane representation for encoding the canonical space, which has been experimentally demonstrated to converge quickly with high quality. This enables us to use a shallower observation MLP, consisting of just two layers in our implementation. We conduct experiments on synthetic and real data and compare with past dynamic NeRF methods. Our KFD-NeRF demonstrates similar or even superior rendering performance within comparable computational time and achieves state-of-the-art view synthesis performance with thorough training.
Abstract:Human body restoration plays a vital role in various applications related to the human body. Despite recent advances in general image restoration using generative models, their performance in human body restoration remains mediocre, often resulting in foreground and background blending, over-smoothing surface textures, missing accessories, and distorted limbs. Addressing these challenges, we propose a novel approach by constructing a human body-aware diffusion model that leverages domain-specific knowledge to enhance performance. Specifically, we employ a pretrained body attention module to guide the diffusion model's focus on the foreground, addressing issues caused by blending between the subject and background. We also demonstrate the value of revisiting the language modality of the diffusion model in restoration tasks by seamlessly incorporating text prompt to improve the quality of surface texture and additional clothing and accessories details. Additionally, we introduce a diffusion sampler tailored for fine-grained human body parts, utilizing local semantic information to rectify limb distortions. Lastly, we collect a comprehensive dataset for benchmarking and advancing the field of human body restoration. Extensive experimental validation showcases the superiority of our approach, both quantitatively and qualitatively, over existing methods.
Abstract:Neural rendering techniques have significantly advanced 3D human body modeling. However, previous approaches often overlook dynamics induced by factors such as motion inertia, leading to challenges in scenarios like abrupt stops after rotation, where the pose remains static while the appearance changes. This limitation arises from reliance on a single pose as conditional input, resulting in ambiguity in mapping one pose to multiple appearances. In this study, we elucidate that variations in human appearance depend not only on the current frame's pose condition but also on past pose states. Therefore, we introduce Dyco, a novel method utilizing the delta pose sequence representation for non-rigid deformations and canonical space to effectively model temporal appearance variations. To prevent a decrease in the model's generalization ability to novel poses, we further propose low-dimensional global context to reduce unnecessary inter-body part dependencies and a quantization operation to mitigate overfitting of the delta pose sequence by the model. To validate the effectiveness of our approach, we collected a novel dataset named I3D-Human, with a focus on capturing temporal changes in clothing appearance under approximate poses. Through extensive experiments on both I3D-Human and existing datasets, our approach demonstrates superior qualitative and quantitative performance. In addition, our inertia-aware 3D human method can unprecedentedly simulate appearance changes caused by inertia at different velocities.
Abstract:Existing video frame interpolation (VFI) methods blindly predict where each object is at a specific timestep t ("time indexing"), which struggles to predict precise object movements. Given two images of a baseball, there are infinitely many possible trajectories: accelerating or decelerating, straight or curved. This often results in blurry frames as the method averages out these possibilities. Instead of forcing the network to learn this complicated time-to-location mapping implicitly together with predicting the frames, we provide the network with an explicit hint on how far the object has traveled between start and end frames, a novel approach termed "distance indexing". This method offers a clearer learning goal for models, reducing the uncertainty tied to object speeds. We further observed that, even with this extra guidance, objects can still be blurry especially when they are equally far from both input frames (i.e., halfway in-between), due to the directional ambiguity in long-range motion. To solve this, we propose an iterative reference-based estimation strategy that breaks down a long-range prediction into several short-range steps. When integrating our plug-and-play strategies into state-of-the-art learning-based models, they exhibit markedly sharper outputs and superior perceptual quality in arbitrary time interpolations, using a uniform distance indexing map in the same format as time indexing. Additionally, distance indexing can be specified pixel-wise, which enables temporal manipulation of each object independently, offering a novel tool for video editing tasks like re-timing.
Abstract:Polarization is a fundamental property of light that encodes abundant information regarding surface shape, material, illumination and viewing geometry. The computer vision community has witnessed a blossom of polarization-based vision applications, such as reflection removal, shape-from-polarization, transparent object segmentation and color constancy, partially due to the emergence of single-chip mono/color polarization sensors that make polarization data acquisition easier than ever. However, is polarization-based vision vulnerable to adversarial attacks? If so, is that possible to realize these adversarial attacks in the physical world, without being perceived by human eyes? In this paper, we warn the community of the vulnerability of polarization-based vision, which can be more serious than RGB-based vision. By adapting a commercial LCD projector, we achieve locally controllable polarizing projection, which is successfully utilized to fool state-of-the-art polarization-based vision algorithms for glass segmentation and color constancy. Compared with existing physical attacks on RGB-based vision, which always suffer from the trade-off between attack efficacy and eye conceivability, the adversarial attackers based on polarizing projection are contact-free and visually imperceptible, since naked human eyes can rarely perceive the difference of viciously manipulated polarizing light and ordinary illumination. This poses unprecedented risks on polarization-based vision, both in the monochromatic and trichromatic domain, for which due attentions should be paid and counter measures be considered.
Abstract:Seeing-in-the-dark is one of the most important and challenging computer vision tasks due to its wide applications and extreme complexities of in-the-wild scenarios. Existing arts can be mainly divided into two threads: 1) RGB-dependent methods restore information using degraded RGB inputs only (\eg, low-light enhancement), 2) RGB-independent methods translate images captured under auxiliary near-infrared (NIR) illuminants into RGB domain (\eg, NIR2RGB translation). The latter is very attractive since it works in complete darkness and the illuminants are visually friendly to naked eyes, but tends to be unstable due to its intrinsic ambiguities. In this paper, we try to robustify NIR2RGB translation by designing the optimal spectrum of auxiliary illumination in the wide-band VIS-NIR range, while keeping visual friendliness. Our core idea is to quantify the visibility constraint implied by the human vision system and incorporate it into the design pipeline. By modeling the formation process of images in the VIS-NIR range, the optimal multiplexing of a wide range of LEDs is automatically designed in a fully differentiable manner, within the feasible region defined by the visibility constraint. We also collect a substantially expanded VIS-NIR hyperspectral image dataset for experiments by using a customized 50-band filter wheel. Experimental results show that the task can be significantly improved by using the optimized wide-band illumination than using NIR only. Codes Available: https://github.com/MyNiuuu/VCSD.
Abstract:Image cropping has progressed tremendously under the data-driven paradigm. However, current approaches do not account for the intentions of the user, which is an issue especially when the composition of the input image is complex. Moreover, labeling of cropping data is costly and hence the amount of data is limited, leading to poor generalization performance of current algorithms in the wild. In this work, we take advantage of vision-language models as a foundation for creating robust and user-intentional cropping algorithms. By adapting a transformer decoder with a pre-trained CLIP-based detection model, OWL-ViT, we develop a method to perform cropping with a text or image query that reflects the user's intention as guidance. In addition, our pipeline design allows the model to learn text-conditioned aesthetic cropping with a small cropping dataset, while inheriting the open-vocabulary ability acquired from millions of text-image pairs. We validate our model through extensive experiments on existing datasets as well as a new cropping test set we compiled that is characterized by content ambiguity.
Abstract:This paper studies the challenging problem of recovering motion from blur, also known as joint deblurring and interpolation or blur temporal super-resolution. The remaining challenges are twofold: 1) the current methods still leave considerable room for improvement in terms of visual quality even on the synthetic dataset, and 2) poor generalization to real-world data. To this end, we propose a blur interpolation transformer (BiT) to effectively unravel the underlying temporal correlation encoded in blur. Based on multi-scale residual Swin transformer blocks, we introduce dual-end temporal supervision and temporally symmetric ensembling strategies to generate effective features for time-varying motion rendering. In addition, we design a hybrid camera system to collect the first real-world dataset of one-to-many blur-sharp video pairs. Experimental results show that BiT has a significant gain over the state-of-the-art methods on the public dataset Adobe240. Besides, the proposed real-world dataset effectively helps the model generalize well to real blurry scenarios.
Abstract:This paper aims at exploring how to synthesize close-to-real blurs that existing video deblurring models trained on them can generalize well to real-world blurry videos. In recent years, deep learning-based approaches have achieved promising success on video deblurring task. However, the models trained on existing synthetic datasets still suffer from generalization problems over real-world blurry scenarios with undesired artifacts. The factors accounting for the failure remain unknown. Therefore, we revisit the classical blur synthesis pipeline and figure out the possible reasons, including shooting parameters, blur formation space, and image signal processor~(ISP). To analyze the effects of these potential factors, we first collect an ultra-high frame-rate (940 FPS) RAW video dataset as the data basis to synthesize various kinds of blurs. Then we propose a novel realistic blur synthesis pipeline termed as RAW-Blur by leveraging blur formation cues. Through numerous experiments, we demonstrate that synthesizing blurs in the RAW space and adopting the same ISP as the real-world testing data can effectively eliminate the negative effects of synthetic data. Furthermore, the shooting parameters of the synthesized blurry video, e.g., exposure time and frame-rate play significant roles in improving the performance of deblurring models. Impressively, the models trained on the blurry data synthesized by the proposed RAW-Blur pipeline can obtain more than 5dB PSNR gain against those trained on the existing synthetic blur datasets. We believe the novel realistic synthesis pipeline and the corresponding RAW video dataset can help the community to easily construct customized blur datasets to improve real-world video deblurring performance largely, instead of laboriously collecting real data pairs.