Abstract:Memory is critical for dialogue agents to maintain coherence and enable continuous adaptation in long-term interactions. While existing memory mechanisms offer basic storage and retrieval capabilities, they are hindered by two primary limitations: (1) rigid memory granularity often disrupts semantic integrity, resulting in fragmented and incoherent memory units; (2) prevalent flat retrieval paradigms rely solely on surface-level semantic similarity, neglecting the structural cues of discourse required to navigate and locate specific episodic contexts. To mitigate these limitations, drawing inspiration from Event Segmentation Theory, we propose ES-Mem, a framework incorporating two core components: (1) a dynamic event segmentation module that partitions long-term interactions into semantically coherent events with distinct boundaries; (2) a hierarchical memory architecture that constructs multi-layered memories and leverages boundary semantics to anchor specific episodic memory for precise context localization. Evaluations on two memory benchmarks demonstrate that ES-Mem yields consistent performance gains over baseline methods. Furthermore, the proposed event segmentation module exhibits robust applicability on dialogue segmentation datasets.
Abstract:Document layout analysis aims to detect and categorize structural elements (e.g., titles, tables, figures) in scanned or digital documents. Popular methods often rely on high-quality Optical Character Recognition (OCR) to merge visual features with extracted text. This dependency introduces two major drawbacks: propagation of text recognition errors and substantial computational overhead, limiting the robustness and practical applicability of multimodal approaches. In contrast to the prevailing multimodal trend, we argue that effective layout analysis depends not on text-visual fusion, but on a deep understanding of documents' intrinsic visual structure. To this end, we propose PARL (Position-Aware Relation Learning Network), a novel OCR-free, vision-only framework that models layout through positional sensitivity and relational structure. Specifically, we first introduce a Bidirectional Spatial Position-Guided Deformable Attention module to embed explicit positional dependencies among layout elements directly into visual features. Second, we design a Graph Refinement Classifier (GRC) to refine predictions by modeling contextual relationships through a dynamically constructed layout graph. Extensive experiments show PARL achieves state-of-the-art results. It establishes a new benchmark for vision-only methods on DocLayNet and, notably, surpasses even strong multimodal models on M6Doc. Crucially, PARL (65M) is highly efficient, using roughly four times fewer parameters than large multimodal models (256M), demonstrating that sophisticated visual structure modeling can be both more efficient and robust than multimodal fusion.
Abstract:Reading order detection is the foundation of document understanding. Most existing methods rely on uniform supervision, implicitly assuming a constant difficulty distribution across layout regions. In this work, we challenge this assumption by revealing a critical flaw: \textbf{Positional Disparity}, a phenomenon where models demonstrate mastery over the deterministic start and end regions but suffer a performance collapse in the complex intermediate sections. This degradation arises because standard training allows the massive volume of easy patterns to drown out the learning signals from difficult layouts. To address this, we propose \textbf{FocalOrder}, a framework driven by \textbf{Focal Preference Optimization (FPO)}. Specifically, FocalOrder employs adaptive difficulty discovery with exponential moving average mechanism to dynamically pinpoint hard-to-learn transitions, while introducing a difficulty-calibrated pairwise ranking objective to enforce global logical consistency. Extensive experiments demonstrate that FocalOrder establishes new state-of-the-art results on OmniDocBench v1.0 and Comp-HRDoc. Our compact model not only outperforms competitive specialized baselines but also significantly surpasses large-scale general VLMs. These results demonstrate that aligning the optimization with intrinsic structural ambiguity of documents is critical for mastering complex document structures.
Abstract:To improve Multi-step Mathematical Reasoning (MsMR) of Large Language Models (LLMs), it is crucial to obtain scalable supervision from the corpus by automatically critiquing mistakes in the reasoning process of MsMR and rendering a final verdict of the problem-solution. Most existing methods rely on crafting high-quality supervised fine-tuning demonstrations for critiquing capability enhancement and pay little attention to delving into the underlying reason for the poor critiquing performance of LLMs. In this paper, we orthogonally quantify and investigate the potential reason -- imbalanced evaluation preference, and conduct a statistical preference analysis. Motivated by the analysis of the reason, a novel perplexity-aware reinforcement learning algorithm is proposed to rectify the evaluation preference, elevating the critiquing capability. Specifically, to probe into LLMs' critiquing characteristics, a One-to-many Problem-Solution (OPS) benchmark is meticulously constructed to quantify the behavior difference of LLMs when evaluating the problem solutions generated by itself and others. Then, to investigate the behavior difference in depth, we conduct a statistical preference analysis oriented on perplexity and find an intriguing phenomenon -- ``LLMs incline to judge solutions with lower perplexity as correct'', which is dubbed as \textit{imbalanced evaluation preference}. To rectify this preference, we regard perplexity as the baton in the algorithm of Group Relative Policy Optimization, supporting the LLMs to explore trajectories that judge lower perplexity as wrong and higher perplexity as correct. Extensive experimental results on our built OPS and existing available critic benchmarks demonstrate the validity of our method.
Abstract:Multi-character role-playing aims to equip models with the capability to simulate diverse roles. Existing methods either use one shared parameterized module across all roles or assign a separate parameterized module to each role. However, the role-shared module may ignore distinct traits of each role, weakening personality learning, while the role-specific module may overlook shared traits across multiple roles, hindering commonality modeling. In this paper, we propose a novel HyCoRA: Hyper-Contrastive Role-Adaptive learning framework, which efficiently improves multi-character role-playing ability by balancing the learning of distinct and shared traits. Specifically, we propose a Hyper-Half Low-Rank Adaptation structure, where one half is a role-specific module generated by a lightweight hyper-network, and the other half is a trainable role-shared module. The role-specific module is devised to represent distinct persona signatures, while the role-shared module serves to capture common traits. Moreover, to better reflect distinct personalities across different roles, we design a hyper-contrastive learning mechanism to help the hyper-network distinguish their unique characteristics. Extensive experimental results on both English and Chinese available benchmarks demonstrate the superiority of our framework. Further GPT-4 evaluations and visual analyses also verify the capability of HyCoRA to capture role characteristics.




Abstract:Traditional Mixture-of-Experts (MoE) networks benefit from utilizing multiple smaller expert models as opposed to a single large network. However, these experts typically operate independently, leaving a question open about whether interconnecting these models could enhance the performance of MoE networks. In response, we introduce GRAPHMOE, a novel method aimed at augmenting the cognitive depth of language models via a self-rethinking mechanism constructed on Pseudo GraphMoE networks. GRAPHMOE employs a recurrent routing strategy to simulate iterative thinking steps, thereby facilitating the flow of information among expert nodes. We implement the GRAPHMOE architecture using Low-Rank Adaptation techniques (LoRA) and conduct extensive experiments on various benchmark datasets. The experimental results reveal that GRAPHMOE outperforms other LoRA based models, achieving state-of-the-art (SOTA) performance. Additionally, this study explores a novel recurrent routing strategy that may inspire further advancements in enhancing the reasoning capabilities of language models.




Abstract:Multimodal hate detection, which aims to identify harmful content online such as memes, is crucial for building a wholesome internet environment. Previous work has made enlightening exploration in detecting explicit hate remarks. However, most of their approaches neglect the analysis of implicit harm, which is particularly challenging as explicit text markers and demographic visual cues are often twisted or missing. The leveraged cross-modal attention mechanisms also suffer from the distributional modality gap and lack logical interpretability. To address these semantic gaps issues, we propose TOT: a topology-aware optimal transport framework to decipher the implicit harm in memes scenario, which formulates the cross-modal aligning problem as solutions for optimal transportation plans. Specifically, we leverage an optimal transport kernel method to capture complementary information from multiple modalities. The kernel embedding provides a non-linear transformation ability to reproduce a kernel Hilbert space (RKHS), which reflects significance for eliminating the distributional modality gap. Moreover, we perceive the topology information based on aligned representations to conduct bipartite graph path reasoning. The newly achieved state-of-the-art performance on two publicly available benchmark datasets, together with further visual analysis, demonstrate the superiority of TOT in capturing implicit cross-modal alignment.