Abstract:Active perception enables robots to dynamically gather information by adjusting their viewpoints, a crucial capability for interacting with complex, partially observable environments. In this paper, we present AP-VLM, a novel framework that combines active perception with a Vision-Language Model (VLM) to guide robotic exploration and answer semantic queries. Using a 3D virtual grid overlaid on the scene and orientation adjustments, AP-VLM allows a robotic manipulator to intelligently select optimal viewpoints and orientations to resolve challenging tasks, such as identifying objects in occluded or inclined positions. We evaluate our system on two robotic platforms: a 7-DOF Franka Panda and a 6-DOF UR5, across various scenes with differing object configurations. Our results demonstrate that AP-VLM significantly outperforms passive perception methods and baseline models, including Toward Grounded Common Sense Reasoning (TGCSR), particularly in scenarios where fixed camera views are inadequate. The adaptability of AP-VLM in real-world settings shows promise for enhancing robotic systems' understanding of complex environments, bridging the gap between high-level semantic reasoning and low-level control.
Abstract:Detecting actions in videos, particularly within cluttered scenes, poses significant challenges due to the limitations of 2D frame analysis from a camera perspective. Unlike human vision, which benefits from 3D understanding, recognizing actions in such environments can be difficult. This research introduces a novel approach integrating 3D features and depth maps alongside RGB features to enhance action recognition accuracy. Our method involves processing estimated depth maps through a separate branch from the RGB feature encoder and fusing the features to understand the scene and actions comprehensively. Using the Side4Video framework and VideoMamba, which employ CLIP and VisionMamba for spatial feature extraction, our approach outperformed our implementation of the Side4Video network on the Something-Something V2 dataset. Our code is available at: https://github.com/SadeghRahmaniB/DEAR
Abstract:Named entity recognition (NER) stands as a fundamental and pivotal task within the realm of Natural Language Processing. Particularly within the domain of Biomedical Method NER, this task presents notable challenges, stemming from the continual influx of domain-specific terminologies in scholarly literature. Current research in Biomedical Method (BioMethod) NER suffers from a scarcity of resources, primarily attributed to the intricate nature of methodological concepts, which necessitate a profound understanding for precise delineation. In this study, we propose a novel dataset for biomedical method entity recognition, employing an automated BioMethod entity recognition and information retrieval system to assist human annotation. Furthermore, we comprehensively explore a range of conventional and contemporary open-domain NER methodologies, including the utilization of cutting-edge large-scale language models (LLMs) customised to our dataset. Our empirical findings reveal that the large parameter counts of language models surprisingly inhibit the effective assimilation of entity extraction patterns pertaining to biomedical methods. Remarkably, the approach, leveraging the modestly sized ALBERT model (only 11MB), in conjunction with conditional random fields (CRF), achieves state-of-the-art (SOTA) performance.
Abstract:This paper demonstrates a self-supervised approach for learning semantic video representations. Recent vision studies show that a masking strategy for vision and natural language supervision has contributed to developing transferable visual pretraining. Our goal is to achieve a more semantic video representation by leveraging the text related to the video content during the pretraining in a fully self-supervised manner. To this end, we present FILS, a novel self-supervised video Feature prediction In semantic Language Space (FILS). The vision model can capture valuable structured information by correctly predicting masked feature semantics in language space. It is learned using a patch-wise video-text contrastive strategy, in which the text representations act as prototypes for transforming vision features into a language space, which are then used as targets for semantically meaningful feature prediction using our masked encoder-decoder structure. FILS demonstrates remarkable transferability on downstream action recognition tasks, achieving state-of-the-art on challenging egocentric datasets, like Epic-Kitchens, Something-SomethingV2, Charades-Ego, and EGTEA, using ViT-Base. Our efficient method requires less computation and smaller batches compared to previous works.
Abstract:Existing methods for evaluating large language models face challenges such as data contamination, sensitivity to prompts, and the high cost of benchmark creation. To address this, we propose a lossless data compression based evaluation approach that tests how models' predictive abilities generalize after their training cutoff. Specifically, we collect comprehensive test data spanning 83 months from 2017 to 2023 and split the data into training and testing periods according to models' training data cutoff. We measure: 1) the compression performance on the testing period as a measure of generalization on unseen data; and 2) the performance gap between the training and testing period as a measure of robustness. Our experiments test 14 representative large language models with various sizes on sources including Wikipedia, news articles, code, arXiv papers, and multi-modal data. We find that the compression rate of many models reduces significantly after their cutoff date, but models such as Mistral and Llama-2 demonstrate a good balance between performance and robustness. Results also suggest that models struggle to generalize on news and code data, but work especially well on arXiv papers. We also find the context size and tokenization implementation have a big impact of on the overall compression performance.
Abstract:Metaphors are considered to pose challenges for a wide spectrum of NLP tasks. This gives rise to the area of computational metaphor processing. However, it remains unclear what types of metaphors challenge current state-of-the-art models. In this paper, we test various NLP models on the VUA metaphor dataset and quantify to what extent metaphors affect models' performance on various downstream tasks. Analysis reveals that VUA includes a large number of metaphors that pose little difficulty to downstream tasks. We would like to shift the attention of researchers away from these metaphors to instead focus on challenging metaphors. To identify hard metaphors, we propose an automatic pipeline that identifies metaphors that challenge a particular model. Our analysis demonstrates that our detected hard metaphors contrast significantly with VUA and reduce the accuracy of machine translation by 16\%, QA performance by 4\%, NLI by 7\%, and metaphor identification recall by over 14\% for various popular NLP systems.
Abstract:Data contamination in evaluation is getting increasingly prevalent with the emergence of language models pre-trained on super large, automatically crawled corpora. This problem leads to significant challenges in the accurate assessment of model capabilities and generalisations. In this paper, we propose LatestEval, an automatic method that leverages the most recent texts to create uncontaminated reading comprehension evaluations. LatestEval avoids data contamination by only using texts published within a recent time window, ensuring no overlap with the training corpora of pre-trained language models. We develop the LatestEval automated pipeline to 1) gather the latest texts; 2) identify key information, and 3) construct questions targeting the information while removing the existing answers from the context. This encourages models to infer the answers themselves based on the remaining context, rather than just copy-paste. Our experiments demonstrate that language models exhibit negligible memorisation behaviours on LatestEval as opposed to previous benchmarks, suggesting a significantly reduced risk of data contamination and leading to a more robust evaluation. Data and code are publicly available at: https://github.com/liyucheng09/LatestEval.
Abstract:The ACL Anthology is an online repository that serves as a comprehensive collection of publications in the field of natural language processing (NLP) and computational linguistics (CL). This paper presents a tool called ``ACL Anthology Helper''. It automates the process of parsing and downloading papers along with their meta-information, which are then stored in a local MySQL database. This allows for efficient management of the local papers using a wide range of operations, including "where," "group," "order," and more. By providing over 20 operations, this tool significantly enhances the retrieval of literature based on specific conditions. Notably, this tool has been successfully utilised in writing a survey paper (Tang et al.,2022a). By introducing the ACL Anthology Helper, we aim to enhance researchers' ability to effectively access and organise literature from the ACL Anthology. This tool offers a convenient solution for researchers seeking to explore the ACL Anthology's vast collection of publications while allowing for more targeted and efficient literature retrieval.
Abstract:Large language models (LLMs) achieved remarkable performance across various tasks. However, they face challenges in managing long documents and extended conversations, due to significantly increased computational requirements, both in memory and inference time, and potential context truncation when the input exceeds the LLM's fixed context length. This paper proposes a method called Selective Context that enhances the inference efficiency of LLMs by identifying and pruning redundancy in the input context to make the input more compact. We test our approach using common data sources requiring long context processing: arXiv papers, news articles, and long conversations, on tasks of summarisation, question answering, and response generation. Experimental results show that Selective Context significantly reduces memory cost and decreases generation latency while maintaining comparable performance compared to that achieved when full context is used. Specifically, we achieve a 50\% reduction in context cost, resulting in a 36\% reduction in inference memory usage and a 32\% reduction in inference time, while observing only a minor drop of .023 in BERTscore and .038 in faithfulness on four downstream applications, indicating that our method strikes a good balance between efficiency and performance.
Abstract:The emergence of ChatGPT has generated much speculation in the press about its potential to disrupt social and economic systems. Its astonishing language ability has aroused strong curiosity among scholars about its performance in different domains. There have been many studies evaluating the ability of ChatGPT and GPT-4 in different tasks and disciplines. However, a comprehensive review summarizing the collective assessment findings is lacking. The objective of this survey is to thoroughly analyze prior assessments of ChatGPT and GPT-4, focusing on its language and reasoning abilities, scientific knowledge, and ethical considerations. Furthermore, an examination of the existing evaluation methods is conducted, offering several recommendations for future research in evaluating large language models.