Peter
Abstract:Technical question and answering (Q&A) sites such as Stack Overflow have become an important source for software developers to seek knowledge. However, code snippets on Q&A sites are usually uncompilable and semantically incomplete for compilation due to unresolved types and missing dependent libraries, which raises the obstacle for users to reuse or analyze Q&A code snippets. Prior approaches either are not designed for synthesizing compilable code or suffer from a low compilation success rate. To address this problem, we propose ZS4C, a lightweight approach to perform zero-shot synthesis of compilable code from incomplete code snippets using Large Language Model (LLM). ZS4C operates in two stages. In the first stage, ZS4C utilizes an LLM, i.e., ChatGPT, to identify missing import statements for a given code snippet, leveraging our designed task-specific prompt template. In the second stage, ZS4C fixes compilation errors caused by incorrect import statements and syntax errors through collaborative work between ChatGPT and a compiler. We thoroughly evaluated ZS4C on a widely used benchmark called StatType-SO against the SOTA approach SnR. Compared with SnR, ZS4C improves the compilation rate from 63% to 87.6%, with a 39.3% improvement. On average, ZS4C can infer more accurate import statements than SnR, with an improvement of 6.6% in the F1.
Abstract:Context: Navigating the knowledge of Stack Overflow (SO) remains challenging. To make the posts vivid to users, SO allows users to write and edit posts with Markdown or HTML so that users can leverage various formatting styles (e.g., bold, italic, and code) to highlight the important information. Nonetheless, there have been limited studies on the highlighted information. Objective: We carried out the first large-scale exploratory study on the information highlighted in SO answers in our recent study. To extend our previous study, we develop approaches to automatically recommend highlighted content with formatting styles using neural network architectures initially designed for the Named Entity Recognition task. Method: In this paper, we studied 31,169,429 answers of Stack Overflow. For training recommendation models, we choose CNN and BERT models for each type of formatting (i.e., Bold, Italic, Code, and Heading) using the information highlighting dataset we collected from SO answers. Results: Our models based on CNN architecture achieve precision ranging from 0.71 to 0.82. The trained model for automatic code content highlighting achieves a recall of 0.73 and an F1 score of 0.71, outperforming the trained models for other formatting styles. The BERT models have even lower recalls and F1 scores than the CNN models. Our analysis of failure cases indicates that the majority of the failure cases are missing identification (i.e., the model misses the content that is supposed to be highlighted) due to the models tend to learn the frequently highlighted words while struggling to learn less frequent words. Conclusion: Our findings suggest that it is possible to develop recommendation models for highlighting information for answers with different formatting styles on Stack Overflow.