Context: Navigating the knowledge of Stack Overflow (SO) remains challenging. To make the posts vivid to users, SO allows users to write and edit posts with Markdown or HTML so that users can leverage various formatting styles (e.g., bold, italic, and code) to highlight the important information. Nonetheless, there have been limited studies on the highlighted information. Objective: We carried out the first large-scale exploratory study on the information highlighted in SO answers in our recent study. To extend our previous study, we develop approaches to automatically recommend highlighted content with formatting styles using neural network architectures initially designed for the Named Entity Recognition task. Method: In this paper, we studied 31,169,429 answers of Stack Overflow. For training recommendation models, we choose CNN and BERT models for each type of formatting (i.e., Bold, Italic, Code, and Heading) using the information highlighting dataset we collected from SO answers. Results: Our models based on CNN architecture achieve precision ranging from 0.71 to 0.82. The trained model for automatic code content highlighting achieves a recall of 0.73 and an F1 score of 0.71, outperforming the trained models for other formatting styles. The BERT models have even lower recalls and F1 scores than the CNN models. Our analysis of failure cases indicates that the majority of the failure cases are missing identification (i.e., the model misses the content that is supposed to be highlighted) due to the models tend to learn the frequently highlighted words while struggling to learn less frequent words. Conclusion: Our findings suggest that it is possible to develop recommendation models for highlighting information for answers with different formatting styles on Stack Overflow.