Abstract:A wide range of user perception applications leverage inertial measurement unit (IMU) data for online prediction. However, restricted by the non-i.i.d. nature of IMU data collected from mobile devices, most systems work well only in a controlled setting (e.g., for a specific user in particular postures), limiting application scenarios. To achieve uncontrolled online prediction on mobile devices, referred to as the flexible user perception (FUP) problem, is attractive but hard. In this paper, we propose a novel scheme, called Prism, which can obtain high FUP accuracy on mobile devices. The core of Prism is to discover task-aware domains embedded in IMU dataset, and to train a domain-aware model on each identified domain. To this end, we design an expectation-maximization (EM) algorithm to estimate latent domains with respect to the specific downstream perception task. Finally, the best-fit model can be automatically selected for use by comparing the test sample and all identified domains in the feature space. We implement Prism on various mobile devices and conduct extensive experiments. Results demonstrate that Prism can achieve the best FUP performance with a low latency.
Abstract:The emergence of large-scale Mixture of Experts (MoE) models has marked a significant advancement in artificial intelligence, offering enhanced model capacity and computational efficiency through conditional computation. However, the deployment and inference of these models present substantial challenges in terms of computational resources, latency, and energy efficiency. This comprehensive survey systematically analyzes the current landscape of inference optimization techniques for MoE models across the entire system stack. We first establish a taxonomical framework that categorizes optimization approaches into model-level, system-level, and hardware-level optimizations. At the model level, we examine architectural innovations including efficient expert design, attention mechanisms, various compression techniques such as pruning, quantization, and knowledge distillation, as well as algorithm improvement including dynamic routing strategies and expert merging methods. At the system level, we investigate distributed computing approaches, load balancing mechanisms, and efficient scheduling algorithms that enable scalable deployment. Furthermore, we delve into hardware-specific optimizations and co-design strategies that maximize throughput and energy efficiency. This survey not only provides a structured overview of existing solutions but also identifies key challenges and promising research directions in MoE inference optimization. Our comprehensive analysis serves as a valuable resource for researchers and practitioners working on large-scale deployment of MoE models in resource-constrained environments. To facilitate ongoing updates and the sharing of cutting-edge advances in MoE inference optimization research, we have established a repository accessible at \url{https://github.com/MoE-Inf/awesome-moe-inference/}.
Abstract:Large Language Models (LLMs) have been widely deployed in a variety of applications, and the context length is rapidly increasing to handle tasks such as long-document QA and complex logical reasoning. However, long context poses significant challenges for inference efficiency, including high memory costs of key-value (KV) cache and increased latency due to extensive memory accesses. Recent works have proposed compressing KV cache to approximate computation, but these methods either evict tokens permanently, never recalling them for later inference, or recall previous tokens at the granularity of pages divided by textual positions. Both approaches degrade the model accuracy and output quality. To achieve efficient and accurate recallable KV cache compression, we introduce ClusterKV, which recalls tokens at the granularity of semantic clusters. We design and implement efficient algorithms and systems for clustering, selection, indexing and caching. Experiment results show that ClusterKV attains negligible accuracy loss across various tasks with 32k context lengths, using only a 1k to 2k KV cache budget, and achieves up to a 2$\times$ speedup in latency and a 2.5$\times$ improvement in decoding throughput. Compared to SoTA recallable KV compression methods, ClusterKV demonstrates higher model accuracy and output quality, while maintaining or exceeding inference efficiency.
Abstract:Transformer models have gained significant attention due to their power in machine learning tasks. Their extensive deployment has raised concerns about the potential leakage of sensitive information during inference. However, when being applied to Transformers, existing approaches based on secure two-party computation (2PC) bring about efficiency limitations in two folds: (1) resource-intensive matrix multiplications in linear layers, and (2) complex non-linear activation functions like $\mathsf{GELU}$ and $\mathsf{Softmax}$. This work presents a new two-party inference framework $\mathsf{Nimbus}$ for Transformer models. For the linear layer, we propose a new 2PC paradigm along with an encoding approach to securely compute matrix multiplications based on an outer-product insight, which achieves $2.9\times \sim 12.5\times$ performance improvements compared to the state-of-the-art (SOTA) protocol. For the non-linear layer, through a new observation of utilizing the input distribution, we propose an approach of low-degree polynomial approximation for $\mathsf{GELU}$ and $\mathsf{Softmax}$, which improves the performance of the SOTA polynomial approximation by $2.9\times \sim 4.0\times$, where the average accuracy loss of our approach is 0.08\% compared to the non-2PC inference without privacy. Compared with the SOTA two-party inference, $\mathsf{Nimbus}$ improves the end-to-end performance of \bert{} inference by $2.7\times \sim 4.7\times$ across different network settings.
Abstract:The Mixture-of-Experts (MoE) architecture has demonstrated significant advantages in the era of Large Language Models (LLMs), offering enhanced capabilities with reduced inference costs. However, deploying MoE-based LLMs on memoryconstrained edge devices remains challenging due to their substantial memory requirements. While existing expertoffloading methods alleviate the memory requirements, they often incur significant expert-loading costs or compromise model accuracy. We present HOBBIT, a mixed precision expert offloading system to enable flexible and efficient MoE inference. Our key insight is that dynamically replacing less critical cache-miss experts with low precision versions can substantially reduce expert-loading latency while preserving model accuracy. HOBBIT introduces three innovative techniques that map the natural hierarchy of MoE computation: (1) a token-level dynamic expert loading mechanism, (2) a layer-level adaptive expert prefetching technique, and (3) a sequence-level multidimensional expert caching policy. These innovations fully leverage the benefits of mixedprecision expert inference. By implementing HOBBIT on top of the renowned LLM inference framework Llama.cpp, we evaluate its performance across different edge devices with representative MoE models. The results demonstrate that HOBBIT achieves up to a 9.93x speedup in decoding compared to state-of-the-art MoE offloading systems.
Abstract:Deep learning models have become pivotal in the field of video processing and is increasingly critical in practical applications such as autonomous driving and object detection. Although Vision Transformers (ViTs) have demonstrated their power, Convolutional Neural Networks (CNNs) remain a highly efficient and high-performance choice for feature extraction and encoding. However, the intensive computational demands of convolution operations hinder its broader adoption as a video encoder. Given the inherent temporal continuity in video frames, changes between consecutive frames are minimal, allowing for the skipping of redundant computations. This technique, which we term as Diff Computation, presents two primary challenges. First, Diff Computation requires to cache intermediate feature maps to ensure the correctness of non-linear computations, leading to significant memory consumption. Second, the imbalance of sparsity among layers, introduced by Diff Computation, incurs accuracy degradation. To address these issues, we propose a memory-efficient scheduling method to eliminate memory overhead and an online adjustment mechanism to minimize accuracy degradation. We integrate these techniques into our framework, SparseTem, to seamlessly support various CNN-based video encoders. SparseTem achieves speedup of 1.79x for EfficientDet and 4.72x for CRNN, with minimal accuracy drop and no additional memory overhead. Extensive experimental results demonstrate that SparseTem sets a new state-of-the-art by effectively utilizing temporal continuity to accelerate CNN-based video encoders.
Abstract:Large Language Models (LLMs) are widely used across various domains, processing millions of daily requests. This surge in demand poses significant challenges in optimizing throughput and latency while keeping costs manageable. The Key-Value (KV) cache, a standard method for retaining previous computations, makes LLM inference highly bounded by memory. While batching strategies can enhance performance, they frequently lead to significant memory fragmentation. Even though cutting-edge systems like vLLM mitigate KV cache fragmentation using paged Attention mechanisms, they still suffer from inefficient memory and computational operations due to the tightly coupled page management and computation kernels. This study introduces the vTensor, an innovative tensor structure for LLM inference based on GPU virtual memory management (VMM). vTensor addresses existing limitations by decoupling computation from memory defragmentation and offering dynamic extensibility. Our framework employs a CPU-GPU heterogeneous approach, ensuring efficient, fragmentation-free memory management while accommodating various computation kernels across different LLM architectures. Experimental results indicate that vTensor achieves an average speedup of 1.86x across different models, with up to 2.42x in multi-turn chat scenarios. Additionally, vTensor provides average speedups of 2.12x and 3.15x in kernel evaluation, reaching up to 3.92x and 3.27x compared to SGLang Triton prefix-prefilling kernels and vLLM paged Attention kernel, respectively. Furthermore, it frees approximately 71.25% (57GB) of memory on the NVIDIA A100 GPU compared to vLLM, enabling more memory-intensive workloads.
Abstract:Recently, the use of large language models (LLMs) for software code generation, e.g., C/C++ and Python, has proven a great success. However, LLMs still suffer from low syntactic and functional correctness when it comes to the generation of register-transfer level (RTL) code, such as Verilog. To address this issue, in this paper, we develop AutoVCoder, a systematic open-source framework that significantly improves the LLMs' correctness of generating Verilog code and enhances the quality of its output at the same time. Our framework integrates three novel techniques, including a high-quality hardware dataset generation approach, a two-round LLM fine-tuning method and a domain-specific retrieval-augmented generation (RAG) mechanism. Experimental results demonstrate that AutoVCoder outperforms both industrial and academic LLMs in Verilog code generation. Specifically, AutoVCoder shows a 0.5% and 2.2% improvement in functional correctness on the EvalMachine and EvalHuman benchmarks compared with BetterV, and also achieves a 3.4% increase in syntax correctness and a 3.4% increase in functional correctness on the RTLLM benchmark compared with RTLCoder.
Abstract:Controllable synthetic data generation can substantially lower the annotation cost of training data in autonomous driving research and development. Prior works use diffusion models to generate driving images conditioned on the 3D object layout. However, those models are trained on small-scale datasets like nuScenes, which lack appearance and layout diversity. Moreover, the trained models can only generate images based on the real-world layout data from the validation set of the same dataset, where overfitting might happen. In this work, we introduce a simulator-conditioned scene generation framework called SimGen that can learn to generate diverse driving scenes by mixing data from the simulator and the real world. It uses a novel cascade diffusion pipeline to address challenging sim-to-real gaps and multi-condition conflicts. A driving video dataset DIVA is collected to enhance the generative diversity of SimGen, which contains over 147.5 hours of real-world driving videos from 73 locations worldwide and simulated driving data from the MetaDrive simulator. SimGen achieves superior generation quality and diversity while preserving controllability based on the text prompt and the layout pulled from a simulator. We further demonstrate the improvements brought by SimGen for synthetic data augmentation on the BEV detection and segmentation task and showcase its capability in safety-critical data generation. Code, data, and models will be made available.
Abstract:Joint consideration of scheduling and adaptive parallelism offers great opportunities for improving the training efficiency of large models on heterogeneous GPU clusters. However, integrating adaptive parallelism into a cluster scheduler expands the cluster scheduling space. The new space is the product of the original scheduling space and the parallelism exploration space of adaptive parallelism (also a product of pipeline, data, and tensor parallelism). The exponentially enlarged scheduling space and ever-changing optimal parallelism plan from adaptive parallelism together result in the contradiction between low-overhead and accurate performance data acquisition for efficient cluster scheduling. This paper presents Crius, a training system for efficiently scheduling multiple large models with adaptive parallelism in a heterogeneous cluster. Crius proposes a novel scheduling granularity called Cell. It represents a job with deterministic resources and pipeline stages. The exploration space of Cell is shrunk to the product of only data and tensor parallelism, thus exposing the potential for accurate and low-overhead performance estimation. Crius then accurately estimates Cells and efficiently schedules training jobs. When a Cell is selected as a scheduling choice, its represented job runs with the optimal parallelism plan explored. Experimental results show that Crius reduces job completion time by up to 48.9% and schedules large models with up to 1.49x cluster throughput improvement.