Abstract:Joint consideration of scheduling and adaptive parallelism offers great opportunities for improving the training efficiency of large models on heterogeneous GPU clusters. However, integrating adaptive parallelism into a cluster scheduler expands the cluster scheduling space. The new space is the product of the original scheduling space and the parallelism exploration space of adaptive parallelism (also a product of pipeline, data, and tensor parallelism). The exponentially enlarged scheduling space and ever-changing optimal parallelism plan from adaptive parallelism together result in the contradiction between low-overhead and accurate performance data acquisition for efficient cluster scheduling. This paper presents Crius, a training system for efficiently scheduling multiple large models with adaptive parallelism in a heterogeneous cluster. Crius proposes a novel scheduling granularity called Cell. It represents a job with deterministic resources and pipeline stages. The exploration space of Cell is shrunk to the product of only data and tensor parallelism, thus exposing the potential for accurate and low-overhead performance estimation. Crius then accurately estimates Cells and efficiently schedules training jobs. When a Cell is selected as a scheduling choice, its represented job runs with the optimal parallelism plan explored. Experimental results show that Crius reduces job completion time by up to 48.9% and schedules large models with up to 1.49x cluster throughput improvement.
Abstract:Federated learning (FL) is a distributed machine learning paradigm that allows clients to collaboratively train a model over their own local data. FL promises the privacy of clients and its security can be strengthened by cryptographic methods such as additively homomorphic encryption (HE). However, the efficiency of FL could seriously suffer from the statistical heterogeneity in both the data distribution discrepancy among clients and the global distribution skewness. We mathematically demonstrate the cause of performance degradation in FL and examine the performance of FL over various datasets. To tackle the statistical heterogeneity problem, we propose a pluggable system-level client selection method named Dubhe, which allows clients to proactively participate in training, meanwhile preserving their privacy with the assistance of HE. Experimental results show that Dubhe is comparable with the optimal greedy method on the classification accuracy, with negligible encryption and communication overhead.
Abstract:In this work, we use facial landmarks to make the deformation for facial images more authentic and verisimilar. The deformation includes the expansion for eyes and the shrinking for noses, mouths, and cheeks. An advanced 106-point facial landmark detector is utilized to provide control points for deformation. Bilinear interpolation is used in the expansion part and Moving Least Squares methods (MLS) including Affine Deformation, Similarity Deformation and Rigid Deformation are used in the shrinking part. We then compare the running time as well as the quality of deformed images using different MLS methods. The experimental results show that the Rigid Deformation which can keep other parts of the images unchanged performs best even if it takes the longest time.