Abstract:Joint consideration of scheduling and adaptive parallelism offers great opportunities for improving the training efficiency of large models on heterogeneous GPU clusters. However, integrating adaptive parallelism into a cluster scheduler expands the cluster scheduling space. The new space is the product of the original scheduling space and the parallelism exploration space of adaptive parallelism (also a product of pipeline, data, and tensor parallelism). The exponentially enlarged scheduling space and ever-changing optimal parallelism plan from adaptive parallelism together result in the contradiction between low-overhead and accurate performance data acquisition for efficient cluster scheduling. This paper presents Crius, a training system for efficiently scheduling multiple large models with adaptive parallelism in a heterogeneous cluster. Crius proposes a novel scheduling granularity called Cell. It represents a job with deterministic resources and pipeline stages. The exploration space of Cell is shrunk to the product of only data and tensor parallelism, thus exposing the potential for accurate and low-overhead performance estimation. Crius then accurately estimates Cells and efficiently schedules training jobs. When a Cell is selected as a scheduling choice, its represented job runs with the optimal parallelism plan explored. Experimental results show that Crius reduces job completion time by up to 48.9% and schedules large models with up to 1.49x cluster throughput improvement.
Abstract:Recently, 3D object detection has attracted significant attention and achieved continuous improvement in real road scenarios. The environmental information is collected from a single sensor or multi-sensor fusion to detect interested objects. However, most of the current 3D object detection approaches focus on developing advanced network architectures to improve the detection precision of the object rather than considering the dynamic driving scenes, where data collected from sensors equipped in the vehicle contain various perturbation features. As a result, existing work cannot still tackle the perturbation issue. In order to solve this problem, we propose a group equivariant bird's eye view network (GeqBevNet) based on the group equivariant theory, which introduces the concept of group equivariant into the BEV fusion object detection network. The group equivariant network is embedded into the fused BEV feature map to facilitate the BEV-level rotational equivariant feature extraction, thus leading to lower average orientation error. In order to demonstrate the effectiveness of the GeqBevNet, the network is verified on the nuScenes validation dataset in which mAOE can be decreased to 0.325. Experimental results demonstrate that GeqBevNet can extract more rotational equivariant features in the 3D object detection of the actual road scene and improve the performance of object orientation prediction.
Abstract:Graph Convolutional Networks (GCNs) have been proved successful in the field of semi-supervised node classification by extracting structural information from graph data. However, the random selection of labeled nodes used by GCNs may lead to unstable generalization performance of GCNs. In this paper, we propose an efficient method for the deterministic selection of labeled nodes: the Determinate Node Selection (DNS) algorithm. The DNS algorithm identifies two categories of representative nodes in the graph: typical nodes and divergent nodes. These labeled nodes are selected by exploring the structure of the graph and determining the ability of the nodes to represent the distribution of data within the graph. The DNS algorithm can be applied quite simply on a wide range of semi-supervised graph neural network models for node classification tasks. Through extensive experimentation, we have demonstrated that the incorporation of the DNS algorithm leads to a remarkable improvement in the average accuracy of the model and a significant decrease in the standard deviation, as compared to the original method.
Abstract:Previous works show that Pre-trained Language Models (PLMs) can capture factual knowledge. However, some analyses reveal that PLMs fail to perform it robustly, e.g., being sensitive to the changes of prompts when extracting factual knowledge. To mitigate this issue, we propose to let PLMs learn the deterministic relationship between the remaining context and the masked content. The deterministic relationship ensures that the masked factual content can be deterministically inferable based on the existing clues in the context. That would provide more stable patterns for PLMs to capture factual knowledge than randomly masking. Two pre-training tasks are further introduced to motivate PLMs to rely on the deterministic relationship when filling masks. Specifically, we use an external Knowledge Base (KB) to identify deterministic relationships and continuously pre-train PLMs with the proposed methods. The factual knowledge probing experiments indicate that the continuously pre-trained PLMs achieve better robustness in factual knowledge capturing. Further experiments on question-answering datasets show that trying to learn a deterministic relationship with the proposed methods can also help other knowledge-intensive tasks.
Abstract:The centrality and diversity of the labeled data are very influential to the performance of semi-supervised learning (SSL), but most SSL models select the labeled data randomly. How to guarantee the centrality and diversity of the labeled data has so far received little research attention. Optimal leading forest (OLF) has been observed to have the advantage of revealing the difference evolution within a class when it was utilized to develop an SSL model. Our key intuition of this study is to learn a kernelized large margin metric for a small amount of most stable and most divergent data that are recognized based on the OLF structure. An optimization problem is formulated to achieve this goal. Also with OLF the multiple local metrics learning is facilitated to address multi-modal and mix-modal problem in SSL. Attribute to this novel design, the accuracy and performance stableness of the SSL model based on OLF is significantly improved compared with its baseline methods without sacrificing much efficiency. The experimental studies have shown that the proposed method achieved encouraging accuracy and running time when compared to the state-of-the-art graph SSL methods. Code has been made available at https://github.com/alanxuji/DeLaLA.
Abstract:Recently, there has been a trend to investigate the factual knowledge captured by Pre-trained Language Models (PLMs). Many works show the PLMs' ability to fill in the missing factual words in cloze-style prompts such as "Dante was born in [MASK]." However, it is still a mystery how PLMs generate the results correctly: relying on effective clues or shortcut patterns? We try to answer this question by a causal-inspired analysis that quantitatively measures and evaluates the word-level patterns that PLMs depend on to generate the missing words. We check the words that have three typical associations with the missing words: knowledge-dependent, positionally close, and highly co-occurred. Our analysis shows: (1) PLMs generate the missing factual words more by the positionally close and highly co-occurred words than the knowledge-dependent words; (2) the dependence on the knowledge-dependent words is more effective than the positionally close and highly co-occurred words. Accordingly, we conclude that the PLMs capture the factual knowledge ineffectively because of depending on the inadequate associations.
Abstract:Human-designed rules are widely used to build industry applications. However, it is infeasible to maintain thousands of such hand-crafted rules. So it is very important to integrate the rule knowledge into neural networks to build a hybrid model that achieves better performance. Specifically, the human-designed rules are formulated as Regular Expressions (REs), from which the equivalent Minimal Deterministic Finite Automatons (MDFAs) are constructed. We propose to use the MDFA as an intermediate model to capture the matched RE patterns as rule-based features for each input sentence and introduce these additional features into neural networks. We evaluate the proposed method on the ATIS intent classification task. The experiment results show that the proposed method achieves the best performance compared to neural networks and four other methods that combine REs and neural networks when the training dataset is relatively small.
Abstract:Collecting supporting evidence from large corpora of text (e.g., Wikipedia) is of great challenge for open-domain Question Answering (QA). Especially, for multi-hop open-domain QA, scattered evidence pieces are required to be gathered together to support the answer extraction. In this paper, we propose a new retrieval target, hop, to collect the hidden reasoning evidence from Wikipedia for complex question answering. Specifically, the hop in this paper is defined as the combination of a hyperlink and the corresponding outbound link document. The hyperlink is encoded as the mention embedding which models the structured knowledge of how the outbound link entity is mentioned in the textual context, and the corresponding outbound link document is encoded as the document embedding representing the unstructured knowledge within it. Accordingly, we build HopRetriever which retrieves hops over Wikipedia to answer complex questions. Experiments on the HotpotQA dataset demonstrate that HopRetriever outperforms previously published evidence retrieval methods by large margins. Moreover, our approach also yields quantifiable interpretations of the evidence collection process.
Abstract:Machine Reading Comprehension (MRC) is a challenging NLP research field with wide real world applications. The great progress of this field in recent years is mainly due to the emergence of large-scale datasets and deep learning. At present, a lot of MRC models have already surpassed the human performance on many datasets despite the obvious giant gap between existing MRC models and genuine human-level reading comprehension. This shows the need of improving existing datasets, evaluation metrics and models to move the MRC models toward 'real' understanding. To address this lack of comprehensive survey of existing MRC tasks, evaluation metrics and datasets, herein, (1) we analyzed 57 MRC tasks and datasets; proposed a more precise classification method of MRC tasks with 4 different attributes (2) we summarized 9 evaluation metrics of MRC tasks and (3) 7 attributes and 10 characteristics of MRC datasets; (4) We also discussed some open issues in MRC research and highlight some future research directions. In addition, to help the community, we have collected, organized, and published our data on a companion website(https://mrc-datasets.github.io/) where MRC researchers could directly access each MRC dataset, papers, baseline projects and browse the leaderboard.
Abstract:A major challenge in materials design is how to efficiently search the vast chemical design space to find the materials with desired properties. One effective strategy is to develop sampling algorithms that can exploit both explicit chemical knowledge and implicit composition rules embodied in the large materials database. Here, we propose a generative machine learning model (MatGAN) based on a generative adversarial network (GAN) for efficient generation of new hypothetical inorganic materials. Trained with materials from the ICSD database, our GAN model can generate hypothetical materials not existing in the training dataset, reaching a novelty of 92.53% when generating 2 million samples. The percentage of chemically valid (charge neutral and electronegativity balanced) samples out of all generated ones reaches 84.5% by our GAN when trained with materials from ICSD even though no such chemical rules are explicitly enforced in our GAN model, indicating its capability to learn implicit chemical composition rules. Our algorithm could be used to speed up inverse design or computational screening of inorganic materials.