https://github.com/alanxuji/DeLaLA.
The centrality and diversity of the labeled data are very influential to the performance of semi-supervised learning (SSL), but most SSL models select the labeled data randomly. How to guarantee the centrality and diversity of the labeled data has so far received little research attention. Optimal leading forest (OLF) has been observed to have the advantage of revealing the difference evolution within a class when it was utilized to develop an SSL model. Our key intuition of this study is to learn a kernelized large margin metric for a small amount of most stable and most divergent data that are recognized based on the OLF structure. An optimization problem is formulated to achieve this goal. Also with OLF the multiple local metrics learning is facilitated to address multi-modal and mix-modal problem in SSL. Attribute to this novel design, the accuracy and performance stableness of the SSL model based on OLF is significantly improved compared with its baseline methods without sacrificing much efficiency. The experimental studies have shown that the proposed method achieved encouraging accuracy and running time when compared to the state-of-the-art graph SSL methods. Code has been made available at