Abstract:In contemporary society, the escalating pressures of life and work have propelled psychological disorders to the forefront of modern health concerns, an issue that has been further accentuated by the COVID-19 pandemic. The prevalence of depression among adolescents is steadily increasing, and traditional diagnostic methods, which rely on scales or interviews, prove particularly inadequate for detecting depression in young people. Addressing these challenges, numerous AI-based methods for assisting in the diagnosis of mental health issues have emerged. However, most of these methods center around fundamental issues with scales or use multimodal approaches like facial expression recognition. Diagnosis of depression risk based on everyday habits and behaviors has been limited to small-scale qualitative studies. Our research leverages adolescent census data to predict depression risk, focusing on children's experiences with depression and their daily life situations. We introduced a method for managing severely imbalanced high-dimensional data and an adaptive predictive approach tailored to data structure characteristics. Furthermore, we proposed a cloud-based architecture for automatic online learning and data updates. This study utilized publicly available NSCH youth census data from 2020 to 2022, encompassing nearly 150,000 data entries. We conducted basic data analyses and predictive experiments, demonstrating significant performance improvements over standard machine learning and deep learning algorithms. This affirmed our data processing method's broad applicability in handling imbalanced medical data. Diverging from typical predictive method research, our study presents a comprehensive architectural solution, considering a wider array of user needs.
Abstract:Weakly Supervised Object Detection (WSOD), aiming to train detectors with only image-level annotations, has arisen increasing attention. Current state-of-the-art approaches mainly follow a two-stage training strategy whichintegrates a fully supervised detector (FSD) with a pure WSOD model. There are two main problems hindering the performance of the two-phase WSOD approaches, i.e., insufficient learning problem and strict reliance between the FSD and the pseudo ground truth (PGT) generated by theWSOD model. This paper proposes pseudo ground truth refinement network (PGTRNet), a simple yet effective method without introducing any extra learnable parameters, to cope with these problems. PGTRNet utilizes multiple bounding boxes to establish the PGT, mitigating the insufficient learning problem. Besides, we propose a novel online PGT refinement approach to steadily improve the quality of PGTby fully taking advantage of the power of FSD during the second-phase training, decoupling the first and second-phase models. Elaborate experiments are conducted on the PASCAL VOC 2007 benchmark to verify the effectiveness of our methods. Experimental results demonstrate that PGTRNet boosts the backbone model by 2.074% mAP and achieves the state-of-the-art performance, showing the significant potentials of the second-phase training.
Abstract:In recent years, advances in the development of whole-slide images have laid a foundation for the utilization of digital images in pathology. With the assistance of computer images analysis that automatically identifies tissue or cell types, they have greatly improved the histopathologic interpretation and diagnosis accuracy. In this paper, the Convolutional Neutral Network (CNN) has been adapted to predict and classify lymph node metastasis in breast cancer. Unlike traditional image cropping methods that are only suitable for large resolution images, we propose a novel data augmentation method named Random Center Cropping (RCC) to facilitate small resolution images. RCC enriches the datasets while retaining the image resolution and the center area of images. In addition, we reduce the downsampling scale of the network to further facilitate small resolution images better. Moreover, Attention and Feature Fusion (FF) mechanisms are employed to improve the semantic information of images. Experiments demonstrate that our methods boost performances of basic CNN architectures. And the best-performed method achieves an accuracy of 97.96% and an AUC of 99.68% on RPCam datasets, respectively.