Abstract:Event cameras are bio-inspired sensors that capture the intensity changes asynchronously and output event streams with distinct advantages, such as high temporal resolution. To exploit event cameras for object/action recognition, existing methods predominantly sample and aggregate events in a second-level duration at every fixed temporal interval (or frequency). However, they often face difficulties in capturing the spatiotemporal relationships for longer, e.g., minute-level, events and generalizing across varying temporal frequencies. To fill the gap, we present a novel framework, dubbed PAST-SSM, exhibiting superior capacity in recognizing events with arbitrary duration (e.g., 0.1s to 4.5s) and generalizing to varying inference frequencies. Our key insight is to learn the spatiotemporal relationships from the encoded event features via the state space model (SSM) -- whose linear complexity makes it ideal for modeling high temporal resolution events with longer sequences. To achieve this goal, we first propose a Path-Adaptive Event Aggregation and Scan (PEAS) module to encode events of varying duration into features with fixed dimensions by adaptively scanning and selecting aggregated event frames. On top of PEAS, we introduce a novel Multi-faceted Selection Guiding (MSG) loss to minimize the randomness and redundancy of the encoded features. This subtly enhances the model generalization across different inference frequencies. Lastly, the SSM is employed to better learn the spatiotemporal properties from the encoded features. Moreover, we build a minute-level event-based recognition dataset, named ArDVS100, with arbitrary duration for the benefit of the community. Extensive experiments prove that our method outperforms prior arts by +3.45%, +0.38% and +8.31% on the DVS Action, SeAct and HARDVS datasets, respectively.
Abstract:Recent years have witnessed tremendous progress in the 3D reconstruction of dynamic humans from a monocular video with the advent of neural rendering techniques. This task has a wide range of applications, including the creation of virtual characters for virtual reality (VR) environments. However, it is still challenging to reconstruct clear humans when the monocular video is affected by motion blur, particularly caused by rapid human motion (e.g., running, dancing), as often occurs in the wild. This leads to distinct inconsistency of shape and appearance for the rendered 3D humans, especially in the blurry regions with rapid motion, e.g., hands and legs. In this paper, we propose ExFMan, the first neural rendering framework that unveils the possibility of rendering high-quality humans in rapid motion with a hybrid frame-based RGB and bio-inspired event camera. The ``out-of-the-box'' insight is to leverage the high temporal information of event data in a complementary manner and adaptively reweight the effect of losses for both RGB frames and events in the local regions, according to the velocity of the rendered human. This significantly mitigates the inconsistency associated with motion blur in the RGB frames. Specifically, we first formulate a velocity field of the 3D body in the canonical space and render it to image space to identify the body parts with motion blur. We then propose two novel losses, i.e., velocity-aware photometric loss and velocity-relative event loss, to optimize the neural human for both modalities under the guidance of the estimated velocity. In addition, we incorporate novel pose regularization and alpha losses to facilitate continuous pose and clear boundary. Extensive experiments on synthetic and real-world datasets demonstrate that ExFMan can reconstruct sharper and higher quality humans.
Abstract:Event cameras offer significant advantages for low-light video enhancement, primarily due to their high dynamic range. Current research, however, is severely limited by the absence of large-scale, real-world, and spatio-temporally aligned event-video datasets. To address this, we introduce a large-scale dataset with over 30,000 pairs of frames and events captured under varying illumination. This dataset was curated using a robotic arm that traces a consistent non-linear trajectory, achieving spatial alignment precision under 0.03mm and temporal alignment with errors under 0.01s for 90% of the dataset. Based on the dataset, we propose \textbf{EvLight++}, a novel event-guided low-light video enhancement approach designed for robust performance in real-world scenarios. Firstly, we design a multi-scale holistic fusion branch to integrate structural and textural information from both images and events. To counteract variations in regional illumination and noise, we introduce Signal-to-Noise Ratio (SNR)-guided regional feature selection, enhancing features from high SNR regions and augmenting those from low SNR regions by extracting structural information from events. To incorporate temporal information and ensure temporal coherence, we further introduce a recurrent module and temporal loss in the whole pipeline. Extensive experiments on our and the synthetic SDSD dataset demonstrate that EvLight++ significantly outperforms both single image- and video-based methods by 1.37 dB and 3.71 dB, respectively. To further explore its potential in downstream tasks like semantic segmentation and monocular depth estimation, we extend our datasets by adding pseudo segmentation and depth labels via meticulous annotation efforts with foundation models. Experiments under diverse low-light scenes show that the enhanced results achieve a 15.97% improvement in mIoU for semantic segmentation.
Abstract:Event cameras harness advantages such as low latency, high temporal resolution, and high dynamic range (HDR), compared to standard cameras. Due to the distinct imaging paradigm shift, a dominant line of research focuses on event-to-video (E2V) reconstruction to bridge event-based and standard computer vision. However, this task remains challenging due to its inherently ill-posed nature: event cameras only detect the edge and motion information locally. Consequently, the reconstructed videos are often plagued by artifacts and regional blur, primarily caused by the ambiguous semantics of event data. In this paper, we find language naturally conveys abundant semantic information, rendering it stunningly superior in ensuring semantic consistency for E2V reconstruction. Accordingly, we propose a novel framework, called LaSe-E2V, that can achieve semantic-aware high-quality E2V reconstruction from a language-guided perspective, buttressed by the text-conditional diffusion models. However, due to diffusion models' inherent diversity and randomness, it is hardly possible to directly apply them to achieve spatial and temporal consistency for E2V reconstruction. Thus, we first propose an Event-guided Spatiotemporal Attention (ESA) module to condition the event data to the denoising pipeline effectively. We then introduce an event-aware mask loss to ensure temporal coherence and a noise initialization strategy to enhance spatial consistency. Given the absence of event-text-video paired data, we aggregate existing E2V datasets and generate textual descriptions using the tagging models for training and evaluation. Extensive experiments on three datasets covering diverse challenging scenarios (e.g., fast motion, low light) demonstrate the superiority of our method. Dataset and code will be available upon acceptance.
Abstract:Recently, electroencephalography (EEG) signals have been actively incorporated to decode brain activity to visual or textual stimuli and achieve object recognition in multi-modal AI. Accordingly, endeavors have been focused on building EEG-based datasets from visual or textual single-modal stimuli. However, these datasets offer limited EEG epochs per category, and the complex semantics of stimuli presented to participants compromise their quality and fidelity in capturing precise brain activity. The study in neuroscience unveils that the relationship between visual and textual stimulus in EEG recordings provides valuable insights into the brain's ability to process and integrate multi-modal information simultaneously. Inspired by this, we propose a novel large-scale multi-modal dataset, named EIT-1M, with over 1 million EEG-image-text pairs. Our dataset is superior in its capacity of reflecting brain activities in simultaneously processing multi-modal information. To achieve this, we collected data pairs while participants viewed alternating sequences of visual-textual stimuli from 60K natural images and category-specific texts. Common semantic categories are also included to elicit better reactions from participants' brains. Meanwhile, response-based stimulus timing and repetition across blocks and sessions are included to ensure data diversity. To verify the effectiveness of EIT-1M, we provide an in-depth analysis of EEG data captured from multi-modal stimuli across different categories and participants, along with data quality scores for transparency. We demonstrate its validity on two tasks: 1) EEG recognition from visual or textual stimuli or both and 2) EEG-to-visual generation.
Abstract:Event camera has recently received much attention for low-light image enhancement (LIE) thanks to their distinct advantages, such as high dynamic range. However, current research is prohibitively restricted by the lack of large-scale, real-world, and spatial-temporally aligned event-image datasets. To this end, we propose a real-world (indoor and outdoor) dataset comprising over 30K pairs of images and events under both low and normal illumination conditions. To achieve this, we utilize a robotic arm that traces a consistent non-linear trajectory to curate the dataset with spatial alignment precision under 0.03mm. We then introduce a matching alignment strategy, rendering 90% of our dataset with errors less than 0.01s. Based on the dataset, we propose a novel event-guided LIE approach, called EvLight, towards robust performance in real-world low-light scenes. Specifically, we first design the multi-scale holistic fusion branch to extract holistic structural and textural information from both events and images. To ensure robustness against variations in the regional illumination and noise, we then introduce a Signal-to-Noise-Ratio (SNR)-guided regional feature selection to selectively fuse features of images from regions with high SNR and enhance those with low SNR by extracting regional structure information from events. Extensive experiments on our dataset and the synthetic SDSD dataset demonstrate our EvLight significantly surpasses the frame-based methods. Code and datasets are available at https://vlislab22.github.io/eg-lowlight/.
Abstract:Current deep learning models often suffer from catastrophic forgetting of old knowledge when continually learning new knowledge. Existing strategies to alleviate this issue often fix the trade-off between keeping old knowledge (stability) and learning new knowledge (plasticity). However, the stability-plasticity trade-off during continual learning may need to be dynamically changed for better model performance. In this paper, we propose two novel ways to adaptively balance model stability and plasticity. The first one is to adaptively integrate multiple levels of old knowledge and transfer it to each block level in the new model. The second one uses prediction uncertainty of old knowledge to naturally tune the importance of learning new knowledge during model training. To our best knowledge, this is the first time to connect model prediction uncertainty and knowledge distillation for continual learning. In addition, this paper applies a modified CutMix particularly to augment the data for old knowledge, further alleviating the catastrophic forgetting issue. Extensive evaluations on the CIFAR100 and the ImageNet datasets confirmed the effectiveness of the proposed method for continual learning.
Abstract:Data imbalance between common and rare diseases during model training often causes intelligent diagnosis systems to have biased predictions towards common diseases. The state-of-the-art approaches apply a two-stage learning framework to alleviate the class-imbalance issue, where the first stage focuses on training of a general feature extractor and the second stage focuses on fine-tuning the classifier head for class rebalancing. However, existing two-stage approaches do not consider the fine-grained property between different diseases, often causing the first stage less effective for medical image classification than for natural image classification tasks. In this study, we propose embedding metric learning into the first stage of the two-stage framework specially to help the feature extractor learn to extract more discriminative feature representations. Extensive experiments mainly on three medical image datasets show that the proposed approach consistently outperforms existing onestage and two-stage approaches, suggesting that metric learning can be used as an effective plug-in component in the two-stage framework for fine-grained class-imbalanced image classification tasks.
Abstract:Imbalanced training data is a significant challenge for medical image classification. In this study, we propose a novel Progressive Class-Center Triplet (PCCT) framework to alleviate the class imbalance issue particularly for diagnosis of rare diseases, mainly by carefully designing the triplet sampling strategy and the triplet loss formation. Specifically, the PCCT framework includes two successive stages. In the first stage, PCCT trains the diagnosis system via a class-balanced triplet loss to coarsely separate distributions of different classes. In the second stage, the PCCT framework further improves the diagnosis system via a class-center involved triplet loss to cause a more compact distribution for each class. For the class-balanced triplet loss, triplets are sampled equally for each class at each training iteration, thus alleviating the imbalanced data issue. For the class-center involved triplet loss, the positive and negative samples in each triplet are replaced by their corresponding class centers, which enforces data representations of the same class closer to the class center. Furthermore, the class-center involved triplet loss is extended to the pair-wise ranking loss and the quadruplet loss, which demonstrates the generalization of the proposed framework. Extensive experiments support that the PCCT framework works effectively for medical image classification with imbalanced training images. On two skin image datasets and one chest X-ray dataset, the proposed approach respectively obtains the mean F1 score 86.2, 65.2, and 90.66 over all classes and 81.4, 63.87, and 81.92 for rare classes, achieving state-of-the-art performance and outperforming the widely used methods for the class imbalance issue.