Abstract:Ultrasound (US)-guided needle insertion is widely employed in percutaneous interventions. However, providing feedback on the needle tip position via US image presents challenges due to noise, artifacts, and the thin imaging plane of US, which degrades needle features and leads to intermittent tip visibility. In this paper, a Mamba-based US needle tracker MambaXCTrack utilizing structured state space models cross-correlation (SSMX-Corr) and implicit motion prompt is proposed, which is the first application of Mamba in US needle tracking. The SSMX-Corr enhances cross-correlation by long-range modeling and global searching of distant semantic features between template and search maps, benefiting the tracking under noise and artifacts by implicitly learning potential distant semantic cues. By combining with cross-map interleaved scan (CIS), local pixel-wise interaction with positional inductive bias can also be introduced to SSMX-Corr. The implicit low-level motion descriptor is proposed as a non-visual prompt to enhance tracking robustness, addressing the intermittent tip visibility problem. Extensive experiments on a dataset with motorized needle insertion in both phantom and tissue samples demonstrate that the proposed tracker outperforms other state-of-the-art trackers while ablation studies further highlight the effectiveness of each proposed tracking module.
Abstract:Recent In-Context Learning based methods have achieved remarkable success in Text-to-SQL task. However, there is still a large gap between the performance of these models and human performance on datasets with complex database schema and difficult questions, such as BIRD. Besides, existing work has neglected to supervise intermediate steps when solving questions iteratively with question decomposition methods, and the schema linking methods used in these works are very rudimentary. To address these issues, we propose MAG-SQL, a multi-agent generative approach with soft schema linking and iterative Sub-SQL refinement. In our framework, an entity-based method with tables' summary is used to select the columns in database, and a novel targets-conditions decomposition method is introduced to decompose those complex questions. Additionally, we build a iterative generating module which includes a Sub-SQL Generator and Sub-SQL Refiner, introducing external oversight for each step of generation. Through a series of ablation studies, the effectiveness of each agent in our framework has been demonstrated. When evaluated on the BIRD benchmark with GPT-4, MAG-SQL achieves an execution accuracy of 61.08\%, compared to the baseline accuracy of 46.35\% for vanilla GPT-4 and the baseline accuracy of 57.56\% for MAC-SQL. Besides, our approach makes similar progress on Spider.
Abstract:Significant progress has been made in scene text detection models since the rise of deep learning, but scene text layout analysis, which aims to group detected text instances as paragraphs, has not kept pace. Previous works either treated text detection and grouping using separate models, or train a model from scratch while using a unified one. All of them have not yet made full use of the already well-trained text detectors and easily obtainable detection datasets. In this paper, we present Text Grouping Adapter (TGA), a module that can enable the utilization of various pre-trained text detectors to learn layout analysis, allowing us to adopt a well-trained text detector right off the shelf or just fine-tune it efficiently. Designed to be compatible with various text detector architectures, TGA takes detected text regions and image features as universal inputs to assemble text instance features. To capture broader contextual information for layout analysis, we propose to predict text group masks from text instance features by one-to-many assignment. Our comprehensive experiments demonstrate that, even with frozen pre-trained models, incorporating our TGA into various pre-trained text detectors and text spotters can achieve superior layout analysis performance, simultaneously inheriting generalized text detection ability from pre-training. In the case of full parameter fine-tuning, we can further improve layout analysis performance.
Abstract:Video-Language Models (VLMs), powered by the advancements in Large Language Models (LLMs), are charting new frontiers in video understanding. A pivotal challenge is the development of an efficient method to encapsulate video content into a set of representative tokens to align with LLMs. In this work, we introduce Slot-VLM, a novel framework designed to generate semantically decomposed video tokens, in terms of object-wise and event-wise visual representations, to facilitate LLM inference. Particularly, we design a SlowFast Slots module, i.e., SF-Slots, that adaptively aggregates the dense video tokens from the CLIP vision encoder to a set of representative slots. In order to take into account both the spatial object details and the varied temporal dynamics, SF-Slots is built with a dual-branch structure. The Slow-Slots branch focuses on extracting object-centric slots from features at high spatial resolution but low (slow) frame sample rate, emphasizing detailed object information. Conversely, Fast-Slots branch is engineered to learn event-centric slots from high temporal sample rate but low spatial resolution features. These complementary slots are combined to form the vision context, serving as the input to the LLM for efficient question answering. Our experimental results demonstrate the effectiveness of our Slot-VLM, which achieves the state-of-the-art performance on video question-answering.
Abstract:The remarkable natural language understanding, reasoning, and generation capabilities of large language models (LLMs) have made them attractive for application to video question answering (Video QA) tasks, utilizing video tokens as contextual input. However, employing LLMs for long video understanding presents significant challenges and remains under-explored. The extensive number of video tokens leads to considerable computational costs for LLMs while using aggregated tokens results in loss of vision details. Moreover, the presence of abundant question-irrelevant tokens introduces noise to the video QA process. To address these issues, we introduce a simple yet effective retrieval-based video language model (R-VLM) for efficient and interpretable long video QA. Specifically, given a question (query) and a long video, our model identifies and selects the most relevant $K$ video chunks and uses their associated visual tokens to serve as context for the LLM inference. This effectively reduces the number of video tokens, eliminates noise interference, and enhances system performance. Our experimental results validate the effectiveness of our framework for comprehending long videos. Furthermore, based on the retrieved chunks, our model is interpretable that provides the justifications on where we get the answers.
Abstract:Recent popularity of Large Language Models (LLMs) has opened countless possibilities in automating numerous AI tasks by connecting LLMs to various domain-specific models or APIs, where LLMs serve as dispatchers while domain-specific models or APIs are action executors. Despite the vast numbers of domain-specific models/APIs, they still struggle to comprehensively cover super diverse automation demands in the interaction between human and User Interfaces (UIs). In this work, we build a multimodal model to ground natural language instructions in given UI screenshots as a generic UI task automation executor. This metadata-free grounding model, consisting of a visual encoder and a language decoder, is first pretrained on well studied document understanding tasks and then learns to decode spatial information from UI screenshots in a promptable way. To facilitate the exploitation of image-to-text pretrained knowledge, we follow the pixel-to-sequence paradigm to predict geometric coordinates in a sequence of tokens using a language decoder. We further propose an innovative Reinforcement Learning (RL) based algorithm to supervise the tokens in such sequence jointly with visually semantic metrics, which effectively strengthens the spatial decoding capability of the pixel-to-sequence paradigm. Extensive experiments demonstrate our proposed reinforced UI instruction grounding model outperforms the state-of-the-art methods by a clear margin and shows the potential as a generic UI task automation API.
Abstract:The recent success of Large Language Models (LLMs) signifies an impressive stride towards artificial general intelligence. They have shown a promising prospect in automatically completing tasks upon user instructions, functioning as brain-like coordinators. The associated risks will be revealed as we delegate an increasing number of tasks to machines for automated completion. A big question emerges: how can we make machines behave responsibly when helping humans automate tasks as personal copilots? In this paper, we explore this question in depth from the perspectives of feasibility, completeness and security. In specific, we present Responsible Task Automation (ResponsibleTA) as a fundamental framework to facilitate responsible collaboration between LLM-based coordinators and executors for task automation with three empowered capabilities: 1) predicting the feasibility of the commands for executors; 2) verifying the completeness of executors; 3) enhancing the security (e.g., the protection of users' privacy). We further propose and compare two paradigms for implementing the first two capabilities. One is to leverage the generic knowledge of LLMs themselves via prompt engineering while the other is to adopt domain-specific learnable models. Moreover, we introduce a local memory mechanism for achieving the third capability. We evaluate our proposed ResponsibleTA on UI task automation and hope it could bring more attentions to ensuring LLMs more responsible in diverse scenarios. The research project homepage is at https://task-automation-research.github.io/responsible_task_automation.
Abstract:Layout generation aims to synthesize realistic graphic scenes consisting of elements with different attributes including category, size, position, and between-element relation. It is a crucial task for reducing the burden on heavy-duty graphic design works for formatted scenes, e.g., publications, documents, and user interfaces (UIs). Diverse application scenarios impose a big challenge in unifying various layout generation subtasks, including conditional and unconditional generation. In this paper, we propose a Layout Diffusion Generative Model (LDGM) to achieve such unification with a single decoupled diffusion model. LDGM views a layout of arbitrary missing or coarse element attributes as an intermediate diffusion status from a completed layout. Since different attributes have their individual semantics and characteristics, we propose to decouple the diffusion processes for them to improve the diversity of training samples and learn the reverse process jointly to exploit global-scope contexts for facilitating generation. As a result, our LDGM can generate layouts either from scratch or conditional on arbitrary available attributes. Extensive qualitative and quantitative experiments demonstrate our proposed LDGM outperforms existing layout generation models in both functionality and performance.
Abstract:Mobile CrowdSensing (MCS), through employing considerable workers to sense and collect data in a participatory manner, has been recognized as a promising paradigm for building many large-scale applications in a cost-effective way, such as combating COVID-19. The recruitment of trustworthy and high-quality workers is an important research issue for MCS. Previous studies assume that the qualities of workers are known in advance, or the platform knows the qualities of workers once it receives their collected data. In reality, to reduce their costs and thus maximize revenue, many strategic workers do not perform their sensing tasks honestly and report fake data to the platform. So, it is very hard for the platform to evaluate the authenticity of the received data. In this paper, an incentive mechanism named Semi-supervision based Combinatorial Multi-Armed Bandit reverse Auction (SCMABA) is proposed to solve the recruitment problem of multiple unknown and strategic workers in MCS. First, we model the worker recruitment as a multi-armed bandit reverse auction problem, and design an UCB-based algorithm to separate the exploration and exploitation, considering the Sensing Rates (SRs) of recruited workers as the gain of the bandit. Next, a Semi-supervised Sensing Rate Learning (SSRL) approach is proposed to quickly and accurately obtain the workers' SRs, which consists of two phases, supervision and self-supervision. Last, SCMABA is designed organically combining the SRs acquisition mechanism with multi-armed bandit reverse auction, where supervised SR learning is used in the exploration, and the self-supervised one is used in the exploitation. We prove that our SCMABA achieves truthfulness and individual rationality. Additionally, we exhibit outstanding performances of the SCMABA mechanism through in-depth simulations of real-world data traces.
Abstract:Transformers have sprung up in the field of computer vision. In this work, we explore whether the core self-attention module in Transformer is the key to achieving excellent performance in image recognition. To this end, we build an attention-free network called sMLPNet based on the existing MLP-based vision models. Specifically, we replace the MLP module in the token-mixing step with a novel sparse MLP (sMLP) module. For 2D image tokens, sMLP applies 1D MLP along the axial directions and the parameters are shared among rows or columns. By sparse connection and weight sharing, sMLP module significantly reduces the number of model parameters and computational complexity, avoiding the common over-fitting problem that plagues the performance of MLP-like models. When only trained on the ImageNet-1K dataset, the proposed sMLPNet achieves 81.9% top-1 accuracy with only 24M parameters, which is much better than most CNNs and vision Transformers under the same model size constraint. When scaling up to 66M parameters, sMLPNet achieves 83.4% top-1 accuracy, which is on par with the state-of-the-art Swin Transformer. The success of sMLPNet suggests that the self-attention mechanism is not necessarily a silver bullet in computer vision. Code will be made publicly available.