Abstract:Ultrasound (US)-guided needle insertion is widely employed in percutaneous interventions. However, providing feedback on the needle tip position via US image presents challenges due to noise, artifacts, and the thin imaging plane of US, which degrades needle features and leads to intermittent tip visibility. In this paper, a Mamba-based US needle tracker MambaXCTrack utilizing structured state space models cross-correlation (SSMX-Corr) and implicit motion prompt is proposed, which is the first application of Mamba in US needle tracking. The SSMX-Corr enhances cross-correlation by long-range modeling and global searching of distant semantic features between template and search maps, benefiting the tracking under noise and artifacts by implicitly learning potential distant semantic cues. By combining with cross-map interleaved scan (CIS), local pixel-wise interaction with positional inductive bias can also be introduced to SSMX-Corr. The implicit low-level motion descriptor is proposed as a non-visual prompt to enhance tracking robustness, addressing the intermittent tip visibility problem. Extensive experiments on a dataset with motorized needle insertion in both phantom and tissue samples demonstrate that the proposed tracker outperforms other state-of-the-art trackers while ablation studies further highlight the effectiveness of each proposed tracking module.
Abstract:Non-contact laser ablation, a precise thermal technique, simultaneously cuts and coagulates tissue without the insertion errors associated with rigid needles. Human organ motions, such as those in the liver, exhibit rhythmic components influenced by respiratory and cardiac cycles, making effective laser energy delivery to target lesions while compensating for tumor motion crucial. This research introduces a data-driven method to derive surrogate models of a soft manipulator. These low-dimensional models offer computational efficiency when integrated into the Model Predictive Control (MPC) framework, while still capturing the manipulator's dynamics with and without control input. Spectral Submanifolds (SSM) theory models the manipulator's autonomous dynamics, acknowledging its tendency to reach equilibrium when external forces are removed. Preliminary results show that the MPC controller using the surrogate model outperforms two other models within the same MPC framework. The data-driven MPC controller also supports a design-agnostic feature, allowing the interchangeability of different soft manipulators within the laser ablation surgery robot system.