Abstract:The Large Language Model (LLM) has gained significant popularity and is extensively utilized across various domains. Most LLM deployments occur within cloud data centers, where they encounter substantial response delays and incur high costs, thereby impacting the Quality of Services (QoS) at the network edge. Leveraging vector database caching to store LLM request results at the edge can substantially mitigate response delays and cost associated with similar requests, which has been overlooked by previous research. Addressing these gaps, this paper introduces a novel Vector database-assisted cloud-Edge collaborative LLM QoS Optimization (VELO) framework. Firstly, we propose the VELO framework, which ingeniously employs vector database to cache the results of some LLM requests at the edge to reduce the response time of subsequent similar requests. Diverging from direct optimization of the LLM, our VELO framework does not necessitate altering the internal structure of LLM and is broadly applicable to diverse LLMs. Subsequently, building upon the VELO framework, we formulate the QoS optimization problem as a Markov Decision Process (MDP) and devise an algorithm grounded in Multi-Agent Reinforcement Learning (MARL) to decide whether to request the LLM in the cloud or directly return the results from the vector database at the edge. Moreover, to enhance request feature extraction and expedite training, we refine the policy network of MARL and integrate expert demonstrations. Finally, we implement the proposed algorithm within a real edge system. Experimental findings confirm that our VELO framework substantially enhances user satisfaction by concurrently diminishing delay and resource consumption for edge users utilizing LLMs.
Abstract:Terahertz communication networks and intelligent reflecting surfaces exhibit significant potential in advancing wireless networks, particularly within the domain of aerial-based multi-access edge computing systems. These technologies enable efficient offloading of computational tasks from user electronic devices to Unmanned Aerial Vehicles or local execution. For the generation of high-quality task-offloading allocations, conventional numerical optimization methods often struggle to solve challenging combinatorial optimization problems within the limited channel coherence time, thereby failing to respond quickly to dynamic changes in system conditions. To address this challenge, we propose a deep learning-based optimization framework called Iterative Order-Preserving policy Optimization (IOPO), which enables the generation of energy-efficient task-offloading decisions within milliseconds. Unlike exhaustive search methods, IOPO provides continuous updates to the offloading decisions without resorting to exhaustive search, resulting in accelerated convergence and reduced computational complexity, particularly when dealing with complex problems characterized by extensive solution spaces. Experimental results demonstrate that the proposed framework can generate energy-efficient task-offloading decisions within a very short time period, outperforming other benchmark methods.
Abstract:This paper aims to generate realistic attack samples of person re-identification, ReID, by reading the enemy's mind (VM). In this paper, we propose a novel inconspicuous and controllable ReID attack baseline, LCYE, to generate adversarial query images. Concretely, LCYE first distills VM's knowledge via teacher-student memory mimicking in the proxy task. Then this knowledge prior acts as an explicit cipher conveying what is essential and realistic, believed by VM, for accurate adversarial misleading. Besides, benefiting from the multiple opposing task framework of LCYE, we further investigate the interpretability and generalization of ReID models from the view of the adversarial attack, including cross-domain adaption, cross-model consensus, and online learning process. Extensive experiments on four ReID benchmarks show that our method outperforms other state-of-the-art attackers with a large margin in white-box, black-box, and target attacks. Our code is now available at https://gitfront.io/r/user-3704489/mKXusqDT4ffr/LCYE/.