Abstract:Text-to-audio-video (T2AV) generation underpins a wide range of applications demanding realistic audio-visual content, including virtual reality, world modeling, gaming, and filmmaking. However, existing T2AV models remain incapable of generating physically plausible sounds, primarily due to their limited understanding of physical principles. To situate current research progress, we present PhyAVBench, a challenging audio physics-sensitivity benchmark designed to systematically evaluate the audio physics grounding capabilities of existing T2AV models. PhyAVBench comprises 1,000 groups of paired text prompts with controlled physical variables that implicitly induce sound variations, enabling a fine-grained assessment of models' sensitivity to changes in underlying acoustic conditions. We term this evaluation paradigm the Audio-Physics Sensitivity Test (APST). Unlike prior benchmarks that primarily focus on audio-video synchronization, PhyAVBench explicitly evaluates models' understanding of the physical mechanisms underlying sound generation, covering 6 major audio physics dimensions, 4 daily scenarios (music, sound effects, speech, and their mix), and 50 fine-grained test points, ranging from fundamental aspects such as sound diffraction to more complex phenomena, e.g., Helmholtz resonance. Each test point consists of multiple groups of paired prompts, where each prompt is grounded by at least 20 newly recorded or collected real-world videos, thereby minimizing the risk of data leakage during model pre-training. Both prompts and videos are iteratively refined through rigorous human-involved error correction and quality control to ensure high quality. We argue that only models with a genuine grasp of audio-related physical principles can generate physically consistent audio-visual content. We hope PhyAVBench will stimulate future progress in this critical yet largely unexplored domain.
Abstract:Multimodality-to-Multiaudio (MM2MA) generation faces significant challenges in synthesizing diverse and contextually aligned audio types (e.g., sound effects, speech, music, and songs) from multimodal inputs (e.g., video, text, images), owing to the scarcity of high-quality paired datasets and the lack of robust multi-task learning frameworks. Recently, multi-agent system shows great potential in tackling the above issues. However, directly applying it to MM2MA task presents three critical challenges: (1) inadequate fine-grained understanding of multimodal inputs (especially for video), (2) the inability of single models to handle diverse audio events, and (3) the absence of self-correction mechanisms for reliable outputs. To this end, we propose AudioGenie, a novel training-free multi-agent system featuring a dual-layer architecture with a generation team and a supervisor team. For the generation team, a fine-grained task decomposition and an adaptive Mixture-of-Experts (MoE) collaborative entity are designed for dynamic model selection, and a trial-and-error iterative refinement module is designed for self-correction. The supervisor team ensures temporal-spatial consistency and verifies outputs through feedback loops. Moreover, we build MA-Bench, the first benchmark for MM2MA tasks, comprising 198 annotated videos with multi-type audios. Experiments demonstrate that our AudioGenie outperforms state-of-the-art (SOTA) methods across 9 metrics in 8 tasks. User study further validate the effectiveness of the proposed method in terms of quality, accuracy, alignment, and aesthetic. The anonymous project website with samples can be found at https://audiogenie.github.io/.
Abstract:Audiobook generation, which creates vivid and emotion-rich audio works, faces challenges in conveying complex emotions, achieving human-like qualities, and aligning evaluations with human preferences. Existing text-to-speech (TTS) methods are often limited to specific scenarios, struggle with emotional transitions, and lack automatic human-aligned evaluation benchmarks, instead relying on either misaligned automated metrics or costly human assessments. To address these issues, we propose Dopamine Audiobook, a new unified training-free system leveraging a multimodal large language model (MLLM) as an AI agent for emotional and human-like audiobook generation and evaluation. Specifically, we first design a flow-based emotion-enhanced framework that decomposes complex emotional speech synthesis into controllable sub-tasks. Then, we propose an adaptive model selection module that dynamically selects the most suitable TTS methods from a set of existing state-of-the-art (SOTA) TTS methods for diverse scenarios. We further enhance emotional expressiveness through paralinguistic augmentation and prosody retrieval at word and utterance levels. For evaluation, we propose a novel GPT-based evaluation framework incorporating self-critique, perspective-taking, and psychological MagicEmo prompts to ensure human-aligned and self-aligned assessments. Experiments show that our method generates long speech with superior emotional expression to SOTA TTS models in various metrics. Importantly, our evaluation framework demonstrates better alignment with human preferences and transferability across audio tasks. Project website with audio samples can be found at https://dopamine-audiobook.github.io.




Abstract:Text-to-speech (TTS), also known as speech synthesis, is a prominent research area that aims to generate natural-sounding human speech from text. Recently, with the increasing industrial demand, TTS technologies have evolved beyond synthesizing human-like speech to enabling controllable speech generation. This includes fine-grained control over various attributes of synthesized speech such as emotion, prosody, timbre, and duration. Besides, advancements in deep learning, such as diffusion and large language models, have significantly enhanced controllable TTS over the past several years. In this paper, we conduct a comprehensive survey of controllable TTS, covering approaches ranging from basic control techniques to methods utilizing natural language prompts, aiming to provide a clear understanding of the current state of research. We examine the general controllable TTS pipeline, challenges, model architectures, and control strategies, offering a comprehensive and clear taxonomy of existing methods. Additionally, we provide a detailed summary of datasets and evaluation metrics and shed some light on the applications and future directions of controllable TTS. To the best of our knowledge, this survey paper provides the first comprehensive review of emerging controllable TTS methods, which can serve as a beneficial resource for both academic researchers and industry practitioners.
Abstract:Face-based Voice Conversion (FVC) is a novel task that leverages facial images to generate the target speaker's voice style. Previous work has two shortcomings: (1) suffering from obtaining facial embeddings that are well-aligned with the speaker's voice identity information, and (2) inadequacy in decoupling content and speaker identity information from the audio input. To address these issues, we present a novel FVC method, Identity-Disentanglement Face-based Voice Conversion (ID-FaceVC), which overcomes the above two limitations. More precisely, we propose an Identity-Aware Query-based Contrastive Learning (IAQ-CL) module to extract speaker-specific facial features, and a Mutual Information-based Dual Decoupling (MIDD) module to purify content features from audio, ensuring clear and high-quality voice conversion. Besides, unlike prior works, our method can accept either audio or text inputs, offering controllable speech generation with adjustable emotional tone and speed. Extensive experiments demonstrate that ID-FaceVC achieves state-of-the-art performance across various metrics, with qualitative and user study results confirming its effectiveness in naturalness, similarity, and diversity. Project website with audio samples and code can be found at https://id-facevc.github.io.