Abstract:Text-to-speech (TTS), also known as speech synthesis, is a prominent research area that aims to generate natural-sounding human speech from text. Recently, with the increasing industrial demand, TTS technologies have evolved beyond synthesizing human-like speech to enabling controllable speech generation. This includes fine-grained control over various attributes of synthesized speech such as emotion, prosody, timbre, and duration. Besides, advancements in deep learning, such as diffusion and large language models, have significantly enhanced controllable TTS over the past several years. In this paper, we conduct a comprehensive survey of controllable TTS, covering approaches ranging from basic control techniques to methods utilizing natural language prompts, aiming to provide a clear understanding of the current state of research. We examine the general controllable TTS pipeline, challenges, model architectures, and control strategies, offering a comprehensive and clear taxonomy of existing methods. Additionally, we provide a detailed summary of datasets and evaluation metrics and shed some light on the applications and future directions of controllable TTS. To the best of our knowledge, this survey paper provides the first comprehensive review of emerging controllable TTS methods, which can serve as a beneficial resource for both academic researchers and industry practitioners.
Abstract:Face-based Voice Conversion (FVC) is a novel task that leverages facial images to generate the target speaker's voice style. Previous work has two shortcomings: (1) suffering from obtaining facial embeddings that are well-aligned with the speaker's voice identity information, and (2) inadequacy in decoupling content and speaker identity information from the audio input. To address these issues, we present a novel FVC method, Identity-Disentanglement Face-based Voice Conversion (ID-FaceVC), which overcomes the above two limitations. More precisely, we propose an Identity-Aware Query-based Contrastive Learning (IAQ-CL) module to extract speaker-specific facial features, and a Mutual Information-based Dual Decoupling (MIDD) module to purify content features from audio, ensuring clear and high-quality voice conversion. Besides, unlike prior works, our method can accept either audio or text inputs, offering controllable speech generation with adjustable emotional tone and speed. Extensive experiments demonstrate that ID-FaceVC achieves state-of-the-art performance across various metrics, with qualitative and user study results confirming its effectiveness in naturalness, similarity, and diversity. Project website with audio samples and code can be found at https://id-facevc.github.io.