Abstract:Global effective receptive field plays a crucial role for image style transfer (ST) to obtain high-quality stylized results. However, existing ST backbones (e.g., CNNs and Transformers) suffer huge computational complexity to achieve global receptive fields. Recently, the State Space Model (SSM), especially the improved variant Mamba, has shown great potential for long-range dependency modeling with linear complexity, which offers a approach to resolve the above dilemma. In this paper, we develop a Mamba-based style transfer framework, termed SaMam. Specifically, a mamba encoder is designed to efficiently extract content and style information. In addition, a style-aware mamba decoder is developed to flexibly adapt to various styles. Moreover, to address the problems of local pixel forgetting, channel redundancy and spatial discontinuity of existing SSMs, we introduce both local enhancement and zigzag scan. Qualitative and quantitative results demonstrate that our SaMam outperforms state-of-the-art methods in terms of both accuracy and efficiency.
Abstract:Understanding and replicating the real world is a critical challenge in Artificial General Intelligence (AGI) research. To achieve this, many existing approaches, such as world models, aim to capture the fundamental principles governing the physical world, enabling more accurate simulations and meaningful interactions. However, current methods often treat different modalities, including 2D (images), videos, 3D, and 4D representations, as independent domains, overlooking their interdependencies. Additionally, these methods typically focus on isolated dimensions of reality without systematically integrating their connections. In this survey, we present a unified survey for multimodal generative models that investigate the progression of data dimensionality in real-world simulation. Specifically, this survey starts from 2D generation (appearance), then moves to video (appearance+dynamics) and 3D generation (appearance+geometry), and finally culminates in 4D generation that integrate all dimensions. To the best of our knowledge, this is the first attempt to systematically unify the study of 2D, video, 3D and 4D generation within a single framework. To guide future research, we provide a comprehensive review of datasets, evaluation metrics and future directions, and fostering insights for newcomers. This survey serves as a bridge to advance the study of multimodal generative models and real-world simulation within a unified framework.
Abstract:Post-training quantization (PTQ) has emerged as a promising solution for reducing the storage and computational cost of vision transformers (ViTs). Recent advances primarily target at crafting quantizers to deal with peculiar activations characterized by ViTs. However, most existing methods underestimate the information loss incurred by weight quantization, resulting in significant performance deterioration, particularly in low-bit cases. Furthermore, a common practice in quantizing post-Softmax activations of ViTs is to employ logarithmic transformations, which unfortunately prioritize less informative values around zero. This approach introduces additional redundancies, ultimately leading to suboptimal quantization efficacy. To handle these, this paper proposes an innovative PTQ method tailored for ViTs, termed AIQViT (Architecture-Informed Post-training Quantization for ViTs). First, we design an architecture-informed low rank compensation mechanism, wherein learnable low-rank weights are introduced to compensate for the degradation caused by weight quantization. Second, we design a dynamic focusing quantizer to accommodate the unbalanced distribution of post-Softmax activations, which dynamically selects the most valuable interval for higher quantization resolution. Extensive experiments on five vision tasks, including image classification, object detection, instance segmentation, point cloud classification, and point cloud part segmentation, demonstrate the superiority of AIQViT over state-of-the-art PTQ methods.
Abstract:3D scene generation conditioned on text prompts has significantly progressed due to the development of 2D diffusion generation models. However, the textual description of 3D scenes is inherently inaccurate and lacks fine-grained control during training, leading to implausible scene generation. As an intuitive and feasible solution, the 3D layout allows for precise specification of object locations within the scene. To this end, we present a text-to-scene generation method (namely, Layout2Scene) using additional semantic layout as the prompt to inject precise control of 3D object positions. Specifically, we first introduce a scene hybrid representation to decouple objects and backgrounds, which is initialized via a pre-trained text-to-3D model. Then, we propose a two-stage scheme to optimize the geometry and appearance of the initialized scene separately. To fully leverage 2D diffusion priors in geometry and appearance generation, we introduce a semantic-guided geometry diffusion model and a semantic-geometry guided diffusion model which are finetuned on a scene dataset. Extensive experiments demonstrate that our method can generate more plausible and realistic scenes as compared to state-of-the-art approaches. Furthermore, the generated scene allows for flexible yet precise editing, thereby facilitating multiple downstream applications.
Abstract:Tracking multiple tiny objects is highly challenging due to their weak appearance and limited features. Existing multi-object tracking algorithms generally focus on single-modality scenes, and overlook the complementary characteristics of tiny objects captured by multiple remote sensors. To enhance tracking performance by integrating complementary information from multiple sources, we propose a novel framework called {HGT-Track (Heterogeneous Graph Transformer based Multi-Tiny-Object Tracking)}. Specifically, we first employ a Transformer-based encoder to embed images from different modalities. Subsequently, we utilize Heterogeneous Graph Transformer to aggregate spatial and temporal information from multiple modalities to generate detection and tracking features. Additionally, we introduce a target re-detection module (ReDet) to ensure tracklet continuity by maintaining consistency across different modalities. Furthermore, this paper introduces the first benchmark VT-Tiny-MOT (Visible-Thermal Tiny Multi-Object Tracking) for RGB-T fused multiple tiny object tracking. Extensive experiments are conducted on VT-Tiny-MOT, and the results have demonstrated the effectiveness of our method. Compared to other state-of-the-art methods, our method achieves better performance in terms of MOTA (Multiple-Object Tracking Accuracy) and ID-F1 score. The code and dataset will be made available at https://github.com/xuqingyu26/HGTMT.
Abstract:Despite the typical inversion-then-editing paradigm using text-to-image (T2I) models has demonstrated promising results, directly extending it to text-to-video (T2V) models still suffers severe artifacts such as color flickering and content distortion. Consequently, current video editing methods primarily rely on T2I models, which inherently lack temporal-coherence generative ability, often resulting in inferior editing results. In this paper, we attribute the failure of the typical editing paradigm to: 1) Tightly Spatial-temporal Coupling. The vanilla pivotal-based inversion strategy struggles to disentangle spatial-temporal information in the video diffusion model; 2) Complicated Spatial-temporal Layout. The vanilla cross-attention control is deficient in preserving the unedited content. To address these limitations, we propose a spatial-temporal decoupled guidance (STDG) and multi-frame null-text optimization strategy to provide pivotal temporal cues for more precise pivotal inversion. Furthermore, we introduce a self-attention control strategy to maintain higher fidelity for precise partial content editing. Experimental results demonstrate that our method (termed VideoDirector) effectively harnesses the powerful temporal generation capabilities of T2V models, producing edited videos with state-of-the-art performance in accuracy, motion smoothness, realism, and fidelity to unedited content.
Abstract:This paper summarizes the 3rd NTIRE challenge on stereo image super-resolution (SR) with a focus on new solutions and results. The task of this challenge is to super-resolve a low-resolution stereo image pair to a high-resolution one with a magnification factor of x4 under a limited computational budget. Compared with single image SR, the major challenge of this challenge lies in how to exploit additional information in another viewpoint and how to maintain stereo consistency in the results. This challenge has 2 tracks, including one track on bicubic degradation and one track on real degradations. In total, 108 and 70 participants were successfully registered for each track, respectively. In the test phase, 14 and 13 teams successfully submitted valid results with PSNR (RGB) scores better than the baseline. This challenge establishes a new benchmark for stereo image SR.
Abstract:The performance of image super-resolution relies heavily on the accuracy of degradation information, especially under blind settings. Due to absence of true degradation models in real-world scenarios, previous methods learn distinct representations by distinguishing different degradations in a batch. However, the most significant degradation differences may provide shortcuts for the learning of representations such that subtle difference may be discarded. In this paper, we propose an alternative to learn degradation representations through reproducing degraded low-resolution (LR) images. By guiding the degrader to reconstruct input LR images, full degradation information can be encoded into the representations. In addition, we develop an energy distance loss to facilitate the learning of the degradation representations by introducing a bounded constraint. Experiments show that our representations can extract accurate and highly robust degradation information. Moreover, evaluations on both synthetic and real images demonstrate that our ReDSR achieves state-of-the-art performance for the blind SR tasks.
Abstract:Hyperspectral target detection (HTD) aims to identify specific materials based on spectral information in hyperspectral imagery and can detect point targets, some of which occupy a smaller than one-pixel area. However, existing HTD methods are developed based on per-pixel binary classification, which limits the feature representation capability for point targets. In this paper, we rethink the hyperspectral point target detection from the object detection perspective, and focus more on the object-level prediction capability rather than the pixel classification capability. Inspired by the token-based processing flow of Detection Transformer (DETR), we propose the first specialized network for hyperspectral multi-class point object detection, SpecDETR. Without the backbone part of the current object detection framework, SpecDETR treats the spectral features of each pixel in hyperspectral images as a token and utilizes a multi-layer Transformer encoder with local and global coordination attention modules to extract deep spatial-spectral joint features. SpecDETR regards point object detection as a one-to-many set prediction problem, thereby achieving a concise and efficient DETR decoder that surpasses the current state-of-the-art DETR decoder in terms of parameters and accuracy in point object detection. We develop a simulated hyperSpectral Point Object Detection benchmark termed SPOD, and for the first time, evaluate and compare the performance of current object detection networks and HTD methods on hyperspectral multi-class point object detection. SpecDETR demonstrates superior performance as compared to current object detection networks and HTD methods on the SPOD dataset. Additionally, we validate on a public HTD dataset that by using data simulation instead of manual annotation, SpecDETR can detect real-world single-spectral point objects directly.
Abstract:Text-to-image generation has witnessed great progress, especially with the recent advancements in diffusion models. Since texts cannot provide detailed conditions like object appearance, reference images are usually leveraged for the control of objects in the generated images. However, existing methods still suffer limited accuracy when the relationship between the foreground and background is complicated. To address this issue, we develop a framework termed Mask-ControlNet by introducing an additional mask prompt. Specifically, we first employ large vision models to obtain masks to segment the objects of interest in the reference image. Then, the object images are employed as additional prompts to facilitate the diffusion model to better understand the relationship between foreground and background regions during image generation. Experiments show that the mask prompts enhance the controllability of the diffusion model to maintain higher fidelity to the reference image while achieving better image quality. Comparison with previous text-to-image generation methods demonstrates our method's superior quantitative and qualitative performance on the benchmark datasets.