Abstract:Small object detection (SOD) has been a longstanding yet challenging task for decades, with numerous datasets and algorithms being developed. However, they mainly focus on either visible or thermal modality, while visible-thermal (RGBT) bimodality is rarely explored. Although some RGBT datasets have been developed recently, the insufficient quantity, limited category, misaligned images and large target size cannot provide an impartial benchmark to evaluate multi-category visible-thermal small object detection (RGBT SOD) algorithms. In this paper, we build the first large-scale benchmark with high diversity for RGBT SOD (namely RGBT-Tiny), including 115 paired sequences, 93K frames and 1.2M manual annotations. RGBT-Tiny contains abundant targets (7 categories) and high-diversity scenes (8 types that cover different illumination and density variations). Note that, over 81% of targets are smaller than 16x16, and we provide paired bounding box annotations with tracking ID to offer an extremely challenging benchmark with wide-range applications, such as RGBT fusion, detection and tracking. In addition, we propose a scale adaptive fitness (SAFit) measure that exhibits high robustness on both small and large targets. The proposed SAFit can provide reasonable performance evaluation and promote detection performance. Based on the proposed RGBT-Tiny dataset and SAFit measure, extensive evaluations have been conducted, including 23 recent state-of-the-art algorithms that cover four different types (i.e., visible generic detection, visible SOD, thermal SOD and RGBT object detection). Project is available at https://github.com/XinyiYing24/RGBT-Tiny.
Abstract:In this paper, we introduce a new approach to address the challenge of generalization in hyperspectral anomaly detection (AD). Our method eliminates the need for adjusting parameters or retraining on new test scenes as required by most existing methods. Employing an image-level training paradigm, we achieve a general anomaly enhancement network for hyperspectral AD that only needs to be trained once. Trained on a set of anomaly-free hyperspectral images with random masks, our network can learn the spatial context characteristics between anomalies and background in an unsupervised way. Additionally, a plug-and-play model selection module is proposed to search for a spatial-spectral transform domain that is more suitable for AD task than the original data. To establish a unified benchmark to comprehensively evaluate our method and existing methods, we develop a large-scale hyperspectral AD dataset (HAD100) that includes 100 real test scenes with diverse anomaly targets. In comparison experiments, we combine our network with a parameter-free detector and achieve the optimal balance between detection accuracy and inference speed among state-of-the-art AD methods. Experimental results also show that our method still achieves competitive performance when the training and test set are captured by different sensor devices. Our code is available at https://github.com/ZhaoxuLi123/AETNet.
Abstract:Space-based infrared tiny ship detection aims at separating tiny ships from the images captured by earth orbiting satellites. Due to the extremely large image coverage area (e.g., thousands square kilometers), candidate targets in these images are much smaller, dimer, more changeable than those targets observed by aerial-based and land-based imaging devices. Existing short imaging distance-based infrared datasets and target detection methods cannot be well adopted to the space-based surveillance task. To address these problems, we develop a space-based infrared tiny ship detection dataset (namely, NUDT-SIRST-Sea) with 48 space-based infrared images and 17598 pixel-level tiny ship annotations. Each image covers about 10000 square kilometers of area with 10000X10000 pixels. Considering the extreme characteristics (e.g., small, dim, changeable) of those tiny ships in such challenging scenes, we propose a multi-level TransUNet (MTU-Net) in this paper. Specifically, we design a Vision Transformer (ViT) Convolutional Neural Network (CNN) hybrid encoder to extract multi-level features. Local feature maps are first extracted by several convolution layers and then fed into the multi-level feature extraction module (MVTM) to capture long-distance dependency. We further propose a copy-rotate-resize-paste (CRRP) data augmentation approach to accelerate the training phase, which effectively alleviates the issue of sample imbalance between targets and background. Besides, we design a FocalIoU loss to achieve both target localization and shape description. Experimental results on the NUDT-SIRST-Sea dataset show that our MTU-Net outperforms traditional and existing deep learning based SIRST methods in terms of probability of detection, false alarm rate and intersection over union.
Abstract:Light field (LF) images can be used to improve the performance of image super-resolution (SR) because both angular and spatial information is available. It is challenging to incorporate distinctive information from different views for LF image SR. Moreover, the long-term information from the previous layers can be weakened as the depth of network increases. In this paper, we propose a dense dual-attention network for LF image SR. Specifically, we design a view attention module to adaptively capture discriminative features across different views and a channel attention module to selectively focus on informative information across all channels. These two modules are fed to two branches and stacked separately in a chain structure for adaptive fusion of hierarchical features and distillation of valid information. Meanwhile, a dense connection is used to fully exploit multi-level information. Extensive experiments demonstrate that our dense dual-attention mechanism can capture informative information across views and channels to improve SR performance. Comparative results show the advantage of our method over state-of-the-art methods on public datasets.
Abstract:Camera arrays provide spatial and angular information within a single snapshot. With refocusing methods, focal planes can be altered after exposure. In this letter, we propose a light field refocusing method to improve the imaging quality of camera arrays. In our method, the disparity is first estimated. Then, the unfocused region (bokeh) is rendered by using a depth-based anisotropic filter. Finally, the refocused image is produced by a reconstruction-based superresolution approach where the bokeh image is used as a regularization term. Our method can selectively refocus images with focused region being superresolved and bokeh being aesthetically rendered. Our method also enables postadjustment of depth of field. We conduct experiments on both public and self-developed datasets. Our method achieves superior visual performance with acceptable computational cost as compared to other state-of-the-art methods. Code is available at https://github.com/YingqianWang/Selective-LF-Refocusing.
Abstract:Single-frame infrared small target (SIRST) detection aims at separating small targets from clutter backgrounds. With the advances of deep learning, CNN-based methods have yielded promising results in generic object detection due to their powerful modeling capability. However, existing CNN-based methods cannot be directly applied for infrared small targets since pooling layers in their networks could lead to the loss of targets in deep layers. To handle this problem, we propose a dense nested attention network (DNANet) in this paper. Specifically, we design a dense nested interactive module (DNIM) to achieve progressive interaction among high-level and low-level features. With the repeated interaction in DNIM, infrared small targets in deep layers can be maintained. Based on DNIM, we further propose a cascaded channel and spatial attention module (CSAM) to adaptively enhance multi-level features. With our DNANet, contextual information of small targets can be well incorporated and fully exploited by repeated fusion and enhancement. Moreover, we develop an infrared small target dataset (namely, NUDT-SIRST) and propose a set of evaluation metrics to conduct comprehensive performance evaluation. Experiments on both public and our self-developed datasets demonstrate the effectiveness of our method. Compared to other state-of-the-art methods, our method achieves better performance in terms of probability of detection (Pd), false-alarm rate (Fa), and intersection of union (IoU).
Abstract:Infrared small target detection plays an important role in many infrared systems. Recently, many infrared small target detection methods have been proposed, in which the lowrank model has been used as a powerful tool. However, most low-rank-based methods assign the same weights for different singular values, which will lead to inaccurate background estimation. Considering that different singular values have different importance and should be treated discriminatively, in this paper, we propose a non-convex tensor low-rank approximation (NTLA) method for infrared small target detection. In our method, NTLA adaptively assigns different weights to different singular values for accurate background estimation. Based on the proposed NTLA, we use the asymmetric spatial-temporal total variation (ASTTV) to thoroughly describe background feature, which can achieve good background estimation and detection in complex scenes. Compared with the traditional total variation approach, ASTTV exploits different smoothness strength for spatial and temporal regularization. We develop an efficient algorithm to find the optimal solution of the proposed model. Compared with some state-of-the-art methods, the proposed method achieve an improvement in different evaluation metrics. Extensive experiments on both synthetic and real data demonstrate the proposed method provide a more robust detection in complex situations with low false rates.