Abstract:Category-agnostic pose estimation (CAPE) aims to predict keypoints for arbitrary classes given a few support images annotated with keypoints. Existing methods only rely on the features extracted at support keypoints to predict or refine the keypoints on query image, but a few support feature vectors are local and inadequate for CAPE. Considering that human can quickly perceive potential keypoints of arbitrary objects, we propose a novel framework for CAPE based on such potential keypoints (named as meta-points). Specifically, we maintain learnable embeddings to capture inherent information of various keypoints, which interact with image feature maps to produce meta-points without any support. The produced meta-points could serve as meaningful potential keypoints for CAPE. Due to the inevitable gap between inherency and annotation, we finally utilize the identities and details offered by support keypoints to assign and refine meta-points to desired keypoints in query image. In addition, we propose a progressive deformable point decoder and a slacked regression loss for better prediction and supervision. Our novel framework not only reveals the inherency of keypoints but also outperforms existing methods of CAPE. Comprehensive experiments and in-depth studies on large-scale MP-100 dataset demonstrate the effectiveness of our framework.
Abstract:We describe a deep high-dynamic-range (HDR) image tone mapping operator that is computationally efficient and perceptually optimized. We first decompose an HDR image into a normalized Laplacian pyramid, and use two deep neural networks (DNNs) to estimate the Laplacian pyramid of the desired tone-mapped image from the normalized representation. We then end-to-end optimize the entire method over a database of HDR images by minimizing the normalized Laplacian pyramid distance (NLPD), a recently proposed perceptual metric. Qualitative and quantitative experiments demonstrate that our method produces images with better visual quality, and runs the fastest among existing local tone mapping algorithms.
Abstract:Semantic segmentation is an extensively studied task in computer vision, with numerous methods proposed every year. Thanks to the advent of deep learning in semantic segmentation, the performance on existing benchmarks is close to saturation. A natural question then arises: Does the superior performance on the closed (and frequently re-used) test sets transfer to the open visual world with unconstrained variations? In this paper, we take steps toward answering the question by exposing failures of existing semantic segmentation methods in the open visual world under the constraint of very limited human labeling effort. Inspired by previous research on model falsification, we start from an arbitrarily large image set, and automatically sample a small image set by MAximizing the Discrepancy (MAD) between two segmentation methods. The selected images have the greatest potential in falsifying either (or both) of the two methods. We also explicitly enforce several conditions to diversify the exposed failures, corresponding to different underlying root causes. A segmentation method, whose failures are more difficult to be exposed in the MAD competition, is considered better. We conduct a thorough MAD diagnosis of ten PASCAL VOC semantic segmentation algorithms. With detailed analysis of experimental results, we point out strengths and weaknesses of the competing algorithms, as well as potential research directions for further advancement in semantic segmentation. The codes are publicly available at \url{https://github.com/QTJiebin/MAD_Segmentation}.