Abstract:Omnidirectional image quality assessment (OIQA) has been widely investigated in the past few years and achieved much success. However, most of existing studies are dedicated to solve the uniform distortion problem in OIQA, which has a natural gap with the non-uniform distortion problem, and their ability in capturing non-uniform distortion is far from satisfactory. To narrow this gap, in this paper, we propose a multitask auxiliary network for non-uniformly distorted omnidirectional images, where the parameters are optimized by jointly training the main task and other auxiliary tasks. The proposed network mainly consists of three parts: a backbone for extracting multiscale features from the viewport sequence, a multitask feature selection module for dynamically allocating specific features to different tasks, and auxiliary sub-networks for guiding the proposed model to capture local distortion and global quality change. Extensive experiments conducted on two large-scale OIQA databases demonstrate that the proposed model outperforms other state-of-the-art OIQA metrics, and these auxiliary sub-networks contribute to improve the performance of the proposed model. The source code is available at https://github.com/RJL2000/MTAOIQA.
Abstract:With the rapid development of multimedia processing and deep learning technologies, especially in the field of video understanding, video quality assessment (VQA) has achieved significant progress. Although researchers have moved from designing efficient video quality mapping models to various research directions, in-depth exploration of the effectiveness-efficiency trade-offs of spatio-temporal modeling in VQA models is still less sufficient. Considering the fact that videos have highly redundant information, this paper investigates this problem from the perspective of joint spatial and temporal sampling, aiming to seek the answer to how little information we should keep at least when feeding videos into the VQA models while with acceptable performance sacrifice. To this end, we drastically sample the video's information from both spatial and temporal dimensions, and the heavily squeezed video is then fed into a stable VQA model. Comprehensive experiments regarding joint spatial and temporal sampling are conducted on six public video quality databases, and the results demonstrate the acceptable performance of the VQA model when throwing away most of the video information. Furthermore, with the proposed joint spatial and temporal sampling strategy, we make an initial attempt to design an online VQA model, which is instantiated by as simple as possible a spatial feature extractor, a temporal feature fusion module, and a global quality regression module. Through quantitative and qualitative experiments, we verify the feasibility of online VQA model by simplifying itself and reducing input.
Abstract:Category-agnostic pose estimation (CAPE) aims to predict keypoints for arbitrary classes given a few support images annotated with keypoints. Existing methods only rely on the features extracted at support keypoints to predict or refine the keypoints on query image, but a few support feature vectors are local and inadequate for CAPE. Considering that human can quickly perceive potential keypoints of arbitrary objects, we propose a novel framework for CAPE based on such potential keypoints (named as meta-points). Specifically, we maintain learnable embeddings to capture inherent information of various keypoints, which interact with image feature maps to produce meta-points without any support. The produced meta-points could serve as meaningful potential keypoints for CAPE. Due to the inevitable gap between inherency and annotation, we finally utilize the identities and details offered by support keypoints to assign and refine meta-points to desired keypoints in query image. In addition, we propose a progressive deformable point decoder and a slacked regression loss for better prediction and supervision. Our novel framework not only reveals the inherency of keypoints but also outperforms existing methods of CAPE. Comprehensive experiments and in-depth studies on large-scale MP-100 dataset demonstrate the effectiveness of our framework.
Abstract:We describe a deep high-dynamic-range (HDR) image tone mapping operator that is computationally efficient and perceptually optimized. We first decompose an HDR image into a normalized Laplacian pyramid, and use two deep neural networks (DNNs) to estimate the Laplacian pyramid of the desired tone-mapped image from the normalized representation. We then end-to-end optimize the entire method over a database of HDR images by minimizing the normalized Laplacian pyramid distance (NLPD), a recently proposed perceptual metric. Qualitative and quantitative experiments demonstrate that our method produces images with better visual quality, and runs the fastest among existing local tone mapping algorithms.
Abstract:Semantic segmentation is an extensively studied task in computer vision, with numerous methods proposed every year. Thanks to the advent of deep learning in semantic segmentation, the performance on existing benchmarks is close to saturation. A natural question then arises: Does the superior performance on the closed (and frequently re-used) test sets transfer to the open visual world with unconstrained variations? In this paper, we take steps toward answering the question by exposing failures of existing semantic segmentation methods in the open visual world under the constraint of very limited human labeling effort. Inspired by previous research on model falsification, we start from an arbitrarily large image set, and automatically sample a small image set by MAximizing the Discrepancy (MAD) between two segmentation methods. The selected images have the greatest potential in falsifying either (or both) of the two methods. We also explicitly enforce several conditions to diversify the exposed failures, corresponding to different underlying root causes. A segmentation method, whose failures are more difficult to be exposed in the MAD competition, is considered better. We conduct a thorough MAD diagnosis of ten PASCAL VOC semantic segmentation algorithms. With detailed analysis of experimental results, we point out strengths and weaknesses of the competing algorithms, as well as potential research directions for further advancement in semantic segmentation. The codes are publicly available at \url{https://github.com/QTJiebin/MAD_Segmentation}.