Abstract:Most of existing blind omnidirectional image quality assessment (BOIQA) models rely on viewport generation by modeling user viewing behavior or transforming omnidirectional images (OIs) into varying formats; however, these methods are either computationally expensive or less scalable. To solve these issues, in this paper, we present a flexible and effective paradigm, which is viewport-unaware and can be easily adapted to 2D plane image quality assessment (2D-IQA). Specifically, the proposed BOIQA model includes an adaptive prior-equator sampling module for extracting a patch sequence from the equirectangular projection (ERP) image in a resolution-agnostic manner, a progressive deformation-unaware feature fusion module which is able to capture patch-wise quality degradation in a deformation-immune way, and a local-to-global quality aggregation module to adaptively map local perception to global quality. Extensive experiments across four OIQA databases (including uniformly distorted OIs and non-uniformly distorted OIs) demonstrate that the proposed model achieves competitive performance with low complexity against other state-of-the-art models, and we also verify its adaptive capacity to 2D-IQA.