Abstract:In the last years, the research interest in visual navigation towards objects in indoor environments has grown significantly. This growth can be attributed to the recent availability of large navigation datasets in photo-realistic simulated environments, like Gibson and Matterport3D. However, the navigation tasks supported by these datasets are often restricted to the objects present in the environment at acquisition time. Also, they fail to account for the realistic scenario in which the target object is a user-specific instance that can be easily confused with similar objects and may be found in multiple locations within the environment. To address these limitations, we propose a new task denominated Personalized Instance-based Navigation (PIN), in which an embodied agent is tasked with locating and reaching a specific personal object by distinguishing it among multiple instances of the same category. The task is accompanied by PInNED, a dedicated new dataset composed of photo-realistic scenes augmented with additional 3D objects. In each episode, the target object is presented to the agent using two modalities: a set of visual reference images on a neutral background and manually annotated textual descriptions. Through comprehensive evaluations and analyses, we showcase the challenges of the PIN task as well as the performance and shortcomings of currently available methods designed for object-driven navigation, considering modular and end-to-end agents.
Abstract:Despite significant advancements in caption generation, existing evaluation metrics often fail to capture the full quality or fine-grained details of captions. This is mainly due to their reliance on non-specific human-written references or noisy pre-training data. Still, finding an effective metric is crucial not only for captions evaluation but also for the generation phase. Metrics can indeed play a key role in the fine-tuning stage of captioning models, ultimately enhancing the quality of the generated captions. In this paper, we propose PAC-S++, a learnable metric that leverages the CLIP model, pre-trained on both web-collected and cleaned data and regularized through additional pairs of generated visual and textual positive samples. Exploiting this stronger and curated pre-training, we also apply PAC-S++ as a reward in the Self-Critical Sequence Training (SCST) stage typically employed to fine-tune captioning models. Extensive experiments on different image and video datasets highlight the effectiveness of PAC-S++ compared to popular metrics for the task, including its sensitivity to object hallucinations. Furthermore, we show that integrating PAC-S++ into the fine-tuning stage of a captioning model results in semantically richer captions with fewer repetitions and grammatical errors. Evaluations on out-of-domain benchmarks further demonstrate the efficacy of our fine-tuning approach in enhancing model capabilities. Source code and trained models are publicly available at: https://github.com/aimagelab/pacscore.
Abstract:Diffusion models have significantly advanced generative AI, but they encounter difficulties when generating complex combinations of multiple objects. As the final result heavily depends on the initial seed, accurately ensuring the desired output can require multiple iterations of the generation process. This repetition not only leads to a waste of time but also increases energy consumption, echoing the challenges of efficiency and accuracy in complex generative tasks. To tackle this issue, we introduce HEaD (Hallucination Early Detection), a new paradigm designed to swiftly detect incorrect generations at the beginning of the diffusion process. The HEaD pipeline combines cross-attention maps with a new indicator, the Predicted Final Image, to forecast the final outcome by leveraging the information available at early stages of the generation process. We demonstrate that using HEaD saves computational resources and accelerates the generation process to get a complete image, i.e. an image where all requested objects are accurately depicted. Our findings reveal that HEaD can save up to 12% of the generation time on a two objects scenario and underscore the importance of early detection mechanisms in generative models.
Abstract:Fine-tuning image captioning models with hand-crafted rewards like the CIDEr metric has been a classical strategy for promoting caption quality at the sequence level. This approach, however, is known to limit descriptiveness and semantic richness and tends to drive the model towards the style of ground-truth sentences, thus losing detail and specificity. On the contrary, recent attempts to employ image-text models like CLIP as reward have led to grammatically incorrect and repetitive captions. In this paper, we propose Self-Cap, a captioning approach that relies on a learnable reward model based on self-generated negatives that can discriminate captions based on their consistency with the image. Specifically, our discriminator is a fine-tuned contrastive image-text model trained to promote caption correctness while avoiding the aberrations that typically happen when training with a CLIP-based reward. To this end, our discriminator directly incorporates negative samples from a frozen captioner, which significantly improves the quality and richness of the generated captions but also reduces the fine-tuning time in comparison to using the CIDEr score as the sole metric for optimization. Experimental results demonstrate the effectiveness of our training strategy on both standard and zero-shot image captioning datasets.
Abstract:The conventional training approach for image captioning involves pre-training a network using teacher forcing and subsequent fine-tuning with Self-Critical Sequence Training to maximize hand-crafted captioning metrics. However, when attempting to optimize modern and higher-quality metrics like CLIP-Score and PAC-Score, this training method often encounters instability and fails to acquire the genuine descriptive capabilities needed to produce fluent and informative captions. In this paper, we propose a new training paradigm termed Direct CLIP-Based Optimization (DiCO). Our approach jointly learns and optimizes a reward model that is distilled from a learnable captioning evaluator with high human correlation. This is done by solving a weighted classification problem directly inside the captioner. At the same time, DiCO prevents divergence from the original model, ensuring that fluency is maintained. DiCO not only exhibits improved stability and enhanced quality in the generated captions but also aligns more closely with human preferences compared to existing methods, especially in modern metrics. Additionally, it maintains competitive performance in traditional metrics. Our source code and trained models are publicly available at https://github.com/aimagelab/DiCO.
Abstract:Smart autonomous agents are becoming increasingly important in various real-life applications, including robotics and autonomous vehicles. One crucial skill that these agents must possess is the ability to interact with their surrounding entities, such as other agents or humans. In this work, we aim at building an intelligent agent that can efficiently navigate in an environment while being able to interact with an oracle (or human) in natural language and ask for directions when it is unsure about its navigation performance. The interaction is started by the agent that produces a question, which is then answered by the oracle on the basis of the shortest trajectory to the goal. The process can be performed multiple times during navigation, thus enabling the agent to hold a dialogue with the oracle. To this end, we propose a novel computational model, named UNMuTe, that consists of two main components: a dialogue model and a navigator. Specifically, the dialogue model is based on a GPT-2 decoder that handles multimodal data consisting of both text and images. First, the dialogue model is trained to generate question-answer pairs: the question is generated using the current image, while the answer is produced leveraging future images on the path toward the goal. Subsequently, a VLN model is trained to follow the dialogue predicting navigation actions or triggering the dialogue model if it needs help. In our experimental analysis, we show that UNMuTe achieves state-of-the-art performance on the main navigation tasks implying dialogue, i.e. Cooperative Vision and Dialogue Navigation (CVDN) and Navigation from Dialogue History (NDH), proving that our approach is effective in generating useful questions and answers to guide navigation.
Abstract:Effectively aligning with human judgment when evaluating machine-generated image captions represents a complex yet intriguing challenge. Existing evaluation metrics like CIDEr or CLIP-Score fall short in this regard as they do not take into account the corresponding image or lack the capability of encoding fine-grained details and penalizing hallucinations. To overcome these issues, in this paper, we propose BRIDGE, a new learnable and reference-free image captioning metric that employs a novel module to map visual features into dense vectors and integrates them into multi-modal pseudo-captions which are built during the evaluation process. This approach results in a multimodal metric that properly incorporates information from the input image without relying on reference captions, bridging the gap between human judgment and machine-generated image captions. Experiments spanning several datasets demonstrate that our proposal achieves state-of-the-art results compared to existing reference-free evaluation scores. Our source code and trained models are publicly available at: https://github.com/aimagelab/bridge-score.
Abstract:Discerning between authentic content and that generated by advanced AI methods has become increasingly challenging. While previous research primarily addresses the detection of fake faces, the identification of generated natural images has only recently surfaced. This prompted the recent exploration of solutions that employ foundation vision-and-language models, like CLIP. However, the CLIP embedding space is optimized for global image-to-text alignment and is not inherently designed for deepfake detection, neglecting the potential benefits of tailored training and local image features. In this study, we propose CoDE (Contrastive Deepfake Embeddings), a novel embedding space specifically designed for deepfake detection. CoDE is trained via contrastive learning by additionally enforcing global-local similarities. To sustain the training of our model, we generate a comprehensive dataset that focuses on images generated by diffusion models and encompasses a collection of 9.2 million images produced by using four different generators. Experimental results demonstrate that CoDE achieves state-of-the-art accuracy on the newly collected dataset, while also showing excellent generalization capabilities to unseen image generators. Our source code, trained models, and collected dataset are publicly available at: https://github.com/aimagelab/CoDE.
Abstract:The objective of image captioning models is to bridge the gap between the visual and linguistic modalities by generating natural language descriptions that accurately reflect the content of input images. In recent years, researchers have leveraged deep learning-based models and made advances in the extraction of visual features and the design of multimodal connections to tackle this task. This work presents a novel approach towards developing image captioning models that utilize an external kNN memory to improve the generation process. Specifically, we propose two model variants that incorporate a knowledge retriever component that is based on visual similarities, a differentiable encoder to represent input images, and a kNN-augmented language model to predict tokens based on contextual cues and text retrieved from the external memory. We experimentally validate our approach on COCO and nocaps datasets and demonstrate that incorporating an explicit external memory can significantly enhance the quality of captions, especially with a larger retrieval corpus. This work provides valuable insights into retrieval-augmented captioning models and opens up new avenues for improving image captioning at a larger scale.
Abstract:Multimodal LLMs are the natural evolution of LLMs, and enlarge their capabilities so as to work beyond the pure textual modality. As research is being carried out to design novel architectures and vision-and-language adapters, in this paper we concentrate on endowing such models with the capability of answering questions that require external knowledge. Our approach, termed Wiki-LLaVA, aims at integrating an external knowledge source of multimodal documents, which is accessed through a hierarchical retrieval pipeline. Relevant passages, using this approach, are retrieved from the external knowledge source and employed as additional context for the LLM, augmenting the effectiveness and precision of generated dialogues. We conduct extensive experiments on datasets tailored for visual question answering with external data and demonstrate the appropriateness of our approach.