Abstract:The projector plays a crucial role in multi-modal language models (MLLMs). The number of visual tokens it outputs affects the efficiency of the MLLM, while the quality of the visual tokens influences the visual understanding capabilities of the MLLM. Current explorations on the projector focus on reducing the number of visual tokens to improve efficiency, often overlooking the inherent spatial discrepancy between the serialized 2-dimensional visual token sequences and natural language token sequences. A Spatial-Aware Efficient Projector (SAEP) is proposed to address this issue. In detail, our SAEP method employs an modified separable depthwise convolution module on multi-layer visual features to enhance the spatial information of visual tokens. As a result, our SAEP method can not only largely reduce the number of visual tokens by 75\%, but also significantly improve the multimodal spatial understanding capability of MLLMs. Moreover, compared to existing projectors, our SAEP gets best performances on massive multimodal evaluation benchmarks, which denotes its effectiveness on bridging the modality gap.
Abstract:Multimodal Sentiment Analysis leverages multimodal signals to detect the sentiment of a speaker. Previous approaches concentrate on performing multimodal fusion and representation learning based on general knowledge obtained from pretrained models, which neglects the effect of domain-specific knowledge. In this paper, we propose Contrastive Knowledge Injection (ConKI) for multimodal sentiment analysis, where specific-knowledge representations for each modality can be learned together with general knowledge representations via knowledge injection based on an adapter architecture. In addition, ConKI uses a hierarchical contrastive learning procedure performed between knowledge types within every single modality, across modalities within each sample, and across samples to facilitate the effective learning of the proposed representations, hence improving multimodal sentiment predictions. The experiments on three popular multimodal sentiment analysis benchmarks show that ConKI outperforms all prior methods on a variety of performance metrics.
Abstract:Recently, BERT has become an essential ingredient of various NLP deep models due to its effectiveness and universal-usability. However, the online deployment of BERT is often blocked by its large-scale parameters and high computational cost. There are plenty of studies showing that the knowledge distillation is efficient in transferring the knowledge from BERT into the model with a smaller size of parameters. Nevertheless, current BERT distillation approaches mainly focus on task-specified distillation, such methodologies lead to the loss of the general semantic knowledge of BERT for universal-usability. In this paper, we propose a sentence representation approximating oriented distillation framework that can distill the pre-trained BERT into a simple LSTM based model without specifying tasks. Consistent with BERT, our distilled model is able to perform transfer learning via fine-tuning to adapt to any sentence-level downstream task. Besides, our model can further cooperate with task-specific distillation procedures. The experimental results on multiple NLP tasks from the GLUE benchmark show that our approach outperforms other task-specific distillation methods or even much larger models, i.e., ELMO, with efficiency well-improved.
Abstract:Leveraging persona information of users in Neural Response Generators (NRG) to perform personalized conversations has been considered as an attractive and important topic in the research of conversational agents over the past few years. Despite of the promising progresses achieved by recent studies in this field, persona information tends to be incorporated into neural networks in the form of user embeddings, with the expectation that the persona can be involved via the End-to-End learning. This paper proposes to adopt the personality-related characteristics of human conversations into variational response generators, by designing a specific conditional variational autoencoder based deep model with two new regularization terms employed to the loss function, so as to guide the optimization towards the direction of generating both persona-aware and relevant responses. Besides, to reasonably evaluate the performances of various persona modeling approaches, this paper further presents three direct persona-oriented metrics from different perspectives. The experimental results have shown that our proposed methodology can notably improve the performance of persona-aware response generation, and the metrics are reasonable to evaluate the results.
Abstract:Chinese meme-face is a special kind of internet subculture widely spread in Chinese Social Community Networks. It usually consists of a template image modified by some amusing details and a text caption. In this paper, we present MemeFaceGenerator, a Generative Adversarial Network with the attention module and template information as supplementary signals, to automatically generate meme-faces from text inputs. We also develop a web service as system demonstration of meme-face synthesis. MemeFaceGenerator has been shown to be capable of generating high-quality meme-faces from random text inputs.
Abstract:Generating structured query language (SQL) from natural language is an emerging research topic. This paper presents a new learning paradigm from indirect supervision of the answers to natural language questions, instead of SQL queries. This paradigm facilitates the acquisition of training data due to the abundant resources of question-answer pairs for various domains in the Internet, and expels the difficult SQL annotation job. An end-to-end neural model integrating with reinforcement learning is proposed to learn SQL generation policy within the answer-driven learning paradigm. The model is evaluated on datasets of different domains, including movie and academic publication. Experimental results show that our model outperforms the baseline models.
Abstract:Recent advances in sequence-to-sequence learning reveal a purely data-driven approach to the response generation task. Despite its diverse applications, existing neural models are prone to producing short and generic replies, making it infeasible to tackle open-domain challenges. In this research, we analyze this critical issue in light of the model's optimization goal and the specific characteristics of the human-to-human dialog corpus. By decomposing the black box into parts, a detailed analysis of the probability limit was conducted to reveal the reason behind these universal replies. Based on these analyses, we propose a max-margin ranking regularization term to avoid the models leaning to these replies. Finally, empirical experiments on case studies and benchmarks with several metrics validate this approach.
Abstract:Modeling human conversations is the essence for building satisfying chat-bots with multi-turn dialog ability. Conversation modeling will notably benefit from domain knowledge since the relationships between sentences can be clarified due to semantic hints introduced by knowledge. In this paper, a deep neural network is proposed to incorporate background knowledge for conversation modeling. Through a specially designed Recall gate, domain knowledge can be transformed into the extra global memory of Long Short-Term Memory (LSTM), so as to enhance LSTM by cooperating with its local memory to capture the implicit semantic relevance between sentences within conversations. In addition, this paper introduces the loose structured domain knowledge base, which can be built with slight amount of manual work and easily adopted by the Recall gate. Our model is evaluated on the context-oriented response selecting task, and experimental results on both two datasets have shown that our approach is promising for modeling human conversations and building key components of automatic chatting systems.