Abstract:Lesion synthesis methods have made significant progress in generating large-scale synthetic datasets. However, existing approaches predominantly focus on texture synthesis and often fail to accurately model masks for anatomically complex lesions. Additionally, these methods typically lack precise control over the synthesis process. For example, perirectal lymph nodes, which range in diameter from 1 mm to 10 mm, exhibit irregular and intricate contours that are challenging for current techniques to replicate faithfully. To address these limitations, we introduce CAFusion, a novel approach for synthesizing perirectal lymph nodes. By leveraging Signed Distance Functions (SDF), CAFusion generates highly realistic 3D anatomical structures. Furthermore, it offers flexible control over both anatomical and textural features by decoupling the generation of morphological attributes (such as shape, size, and position) from textural characteristics, including signal intensity. Experimental results demonstrate that our synthetic data substantially improve segmentation performance, achieving a 6.45% increase in the Dice coefficient. In the visual Turing test, experienced radiologists found it challenging to distinguish between synthetic and real lesions, highlighting the high degree of realism and anatomical accuracy achieved by our approach. These findings validate the effectiveness of our method in generating high-quality synthetic lesions for advancing medical image processing applications.
Abstract:Accurate medical image segmentation is crucial for precise anatomical delineation. Deep learning models like U-Net have shown great success but depend heavily on large datasets and struggle with domain shifts, complex structures, and limited training samples. Recent studies have explored diffusion models for segmentation by iteratively refining masks. However, these methods still retain the conventional image-to-mask mapping, making them highly sensitive to input data, which hampers stability and generalization. In contrast, we introduce DiffAtlas, a novel generative framework that models both images and masks through diffusion during training, effectively ``GenAI-fying'' atlas-based segmentation. During testing, the model is guided to generate a specific target image-mask pair, from which the corresponding mask is obtained. DiffAtlas retains the robustness of the atlas paradigm while overcoming its scalability and domain-specific limitations. Extensive experiments on CT and MRI across same-domain, cross-modality, varying-domain, and different data-scale settings using the MMWHS and TotalSegmentator datasets demonstrate that our approach outperforms existing methods, particularly in limited-data and zero-shot modality segmentation. Code is available at https://github.com/M3DV/DiffAtlas.
Abstract:Accurate segmentation of rectal lymph nodes is crucial for the staging and treatment planning of rectal cancer. However, the complexity of the surrounding anatomical structures and the scarcity of annotated data pose significant challenges. This study introduces a novel lymph node synthesis technique aimed at generating diverse and realistic synthetic rectal lymph node samples to mitigate the reliance on manual annotation. Unlike direct diffusion methods, which often produce masks that are discontinuous and of suboptimal quality, our approach leverages an implicit SDF-based method for mask generation, ensuring the production of continuous, stable, and morphologically diverse masks. Experimental results demonstrate that our synthetic data significantly improves segmentation performance. Our work highlights the potential of diffusion model for accurately synthesizing structurally complex lesions, such as lymph nodes in rectal cancer, alleviating the challenge of limited annotated data in this field and aiding in advancements in rectal cancer diagnosis and treatment.
Abstract:The effective alignment of Large Language Models (LLMs) with precise instructions is essential for their application in diverse real-world scenarios. Current methods focus on enhancing the diversity and complexity of training and evaluation samples, yet they fall short in accurately assessing LLMs' ability to follow similar instruction variants. We introduce an effective data augmentation technique that decomposes complex instructions into simpler sub-components, modifies these, and reconstructs them into new variants, thereby preserves the original instruction's context and complexity while introducing variability, which is critical for training and evaluating LLMs' instruction-following precision. We developed the DeMoRecon dataset using this method to both fine-tune and evaluate LLMs. Our findings show that LLMs fine-tuned with DeMoRecon will gain significant performance boost on both ours and commonly used instructions-following benchmarks.
Abstract:Accurate segmentation of metastatic lymph nodes in rectal cancer is crucial for the staging and treatment of rectal cancer. However, existing segmentation approaches face challenges due to the absence of pixel-level annotated datasets tailored for lymph nodes around the rectum. Additionally, metastatic lymph nodes are characterized by their relatively small size, irregular shapes, and lower contrast compared to the background, further complicating the segmentation task. To address these challenges, we present the first large-scale perirectal metastatic lymph node CT image dataset called Meply, which encompasses pixel-level annotations of 269 patients diagnosed with rectal cancer. Furthermore, we introduce a novel lymph-node segmentation model named CoSAM. The CoSAM utilizes sequence-based detection to guide the segmentation of metastatic lymph nodes in rectal cancer, contributing to improved localization performance for the segmentation model. It comprises three key components: sequence-based detection module, segmentation module, and collaborative convergence unit. To evaluate the effectiveness of CoSAM, we systematically compare its performance with several popular segmentation methods using the Meply dataset. Our code and dataset will be publicly available at: https://github.com/kanydao/CoSAM.
Abstract:Reinforcement Learning from AI Feedback (RLAIF) has the advantages of shorter annotation cycles and lower costs over Reinforcement Learning from Human Feedback (RLHF), making it highly efficient during the rapid strategy iteration periods of large language model (LLM) training. Using ChatGPT as a labeler to provide feedback on open-domain prompts in RLAIF training, we observe an increase in human evaluators' preference win ratio for model responses, but a decrease in evaluators' satisfaction rate. Analysis suggests that the decrease in satisfaction rate is mainly due to some responses becoming less helpful, particularly in terms of correctness and truthfulness, highlighting practical limitations of basic RLAIF. In this paper, we propose Hybrid Reinforcement Learning from AI Feedback (HRLAIF). This method enhances the accuracy of AI annotations for responses, making the model's helpfulness more robust in training process. Additionally, it employs AI for Red Teaming, further improving the model's harmlessness. Human evaluation results show that HRLAIF inherits the ability of RLAIF to enhance human preference for outcomes at a low cost while also improving the satisfaction rate of responses. Compared to the policy model before Reinforcement Learning (RL), it achieves an increase of 2.08\% in satisfaction rate, effectively addressing the issue of a decrease of 4.58\% in satisfaction rate after basic RLAIF.
Abstract:Ensuring factual consistency between the summary and the original document is paramount in summarization tasks. Consequently, considerable effort has been dedicated to detecting inconsistencies. With the advent of Large Language Models (LLMs), recent studies have begun to leverage their advanced language understanding capabilities for inconsistency detection. However, early attempts have shown that LLMs underperform traditional models due to their limited ability to follow instructions and the absence of an effective detection methodology. In this study, we reassess summary inconsistency detection with LLMs, comparing the performances of GPT-3.5 and GPT-4. To advance research in LLM-based inconsistency detection, we propose SIFiD (Summary Inconsistency Detection with Filtered Document) that identify key sentences within documents by either employing natural language inference or measuring semantic similarity between summaries and documents.
Abstract:In this work, we propose a novel approach to densely ground visual entities from a long caption. We leverage a large multimodal model (LMM) to extract semantic nouns, a class-agnostic segmentation model to generate entity-level segmentation, and the proposed multi-modal feature fusion module to associate each semantic noun with its corresponding segmentation mask. Additionally, we introduce a strategy of encoding entity segmentation masks into a colormap, enabling the preservation of fine-grained predictions from features of high-resolution masks. This approach allows us to extract visual features from low-resolution images using the CLIP vision encoder in the LMM, which is more computationally efficient than existing approaches that use an additional encoder for high-resolution images. Our comprehensive experiments demonstrate the superiority of our method, outperforming state-of-the-art techniques on three tasks, including panoptic narrative grounding, referring expression segmentation, and panoptic segmentation.
Abstract:The fine-tuning of Large Language Models (LLMs) specialized in code generation has seen notable advancements through the use of open-domain coding queries. Despite the successes, existing methodologies like Evol-Instruct encounter performance limitations, impeding further enhancements in code generation tasks. This paper examines the constraints of existing prompt evolution techniques and introduces a novel approach, Instruction Fusion (IF). IF innovatively combines two distinct prompts through a hybridization process, thereby enhancing the evolution of training prompts for code LLMs. Our experimental results reveal that the proposed novel method effectively addresses the shortcomings of prior methods, significantly improving the performance of Code LLMs across five code generation benchmarks, namely HumanEval, HumanEval+, MBPP, MBPP+ and MultiPL-E, which underscore the effectiveness of Instruction Fusion in advancing the capabilities of LLMs in code generation.
Abstract:This paper introduces a novel unified representation of diffusion models for image generation and segmentation. Specifically, we use a colormap to represent entity-level masks, addressing the challenge of varying entity numbers while aligning the representation closely with the image RGB domain. Two novel modules, including the location-aware color palette and progressive dichotomy module, are proposed to support our mask representation. On the one hand, a location-aware palette guarantees the colors' consistency to entities' locations. On the other hand, the progressive dichotomy module can efficiently decode the synthesized colormap to high-quality entity-level masks in a depth-first binary search without knowing the cluster numbers. To tackle the issue of lacking large-scale segmentation training data, we employ an inpainting pipeline and then improve the flexibility of diffusion models across various tasks, including inpainting, image synthesis, referring segmentation, and entity segmentation. Comprehensive experiments validate the efficiency of our approach, demonstrating comparable segmentation mask quality to state-of-the-art and adaptability to multiple tasks. The code will be released at \href{https://github.com/qqlu/Entity}{https://github.com/qqlu/Entity}.