Abstract:Advances in text-based image generation and editing have revolutionized content creation, enabling users to create impressive content from imaginative text prompts. However, existing methods are not designed to work well with the oversimplified prompts that are often encountered in typical scenarios when users start their editing with only vague or abstract purposes in mind. Those scenarios demand elaborate ideation efforts from the users to bridge the gap between such vague starting points and the detailed creative ideas needed to depict the desired results. In this paper, we introduce the task of Image Editing Recommendation (IER). This task aims to automatically generate diverse creative editing instructions from an input image and a simple prompt representing the users' under-specified editing purpose. To this end, we introduce Creativity-Vision Language Assistant~(Creativity-VLA), a multimodal framework designed specifically for edit-instruction generation. We train Creativity-VLA on our edit-instruction dataset specifically curated for IER. We further enhance our model with a novel 'token-for-localization' mechanism, enabling it to support both global and local editing operations. Our experimental results demonstrate the effectiveness of \ours{} in suggesting instructions that not only contain engaging creative elements but also maintain high relevance to both the input image and the user's initial hint.
Abstract:In this work, we propose a novel approach to densely ground visual entities from a long caption. We leverage a large multimodal model (LMM) to extract semantic nouns, a class-agnostic segmentation model to generate entity-level segmentation, and the proposed multi-modal feature fusion module to associate each semantic noun with its corresponding segmentation mask. Additionally, we introduce a strategy of encoding entity segmentation masks into a colormap, enabling the preservation of fine-grained predictions from features of high-resolution masks. This approach allows us to extract visual features from low-resolution images using the CLIP vision encoder in the LMM, which is more computationally efficient than existing approaches that use an additional encoder for high-resolution images. Our comprehensive experiments demonstrate the superiority of our method, outperforming state-of-the-art techniques on three tasks, including panoptic narrative grounding, referring expression segmentation, and panoptic segmentation.
Abstract:In this paper, we highlight a problem of evaluation metrics adopted in the open-vocabulary segmentation. That is, the evaluation process still heavily relies on closed-set metrics on zero-shot or cross-dataset pipelines without considering the similarity between predicted and ground truth categories. To tackle this issue, we first survey eleven similarity measurements between two categorical words using WordNet linguistics statistics, text embedding, and language models by comprehensive quantitative analysis and user study. Built upon those explored measurements, we designed novel evaluation metrics, namely Open mIoU, Open AP, and Open PQ, tailored for three open-vocabulary segmentation tasks. We benchmarked the proposed evaluation metrics on 12 open-vocabulary methods of three segmentation tasks. Even though the relative subjectivity of similarity distance, we demonstrate that our metrics can still well evaluate the open ability of the existing open-vocabulary segmentation methods. We hope that our work can bring with the community new thinking about how to evaluate the open ability of models. The evaluation code is released in github.
Abstract:In dense image segmentation tasks (e.g., semantic, panoptic), existing methods can hardly generalize well to unseen image domains, predefined classes, and image resolution & quality variations. Motivated by these observations, we construct a large-scale entity segmentation dataset to explore fine-grained entity segmentation, with a strong focus on open-world and high-quality dense segmentation. The dataset contains images spanning diverse image domains and resolutions, along with high-quality mask annotations for training and testing. Given the high-quality and -resolution nature of the dataset, we propose CropFormer for high-quality segmentation, which can improve mask prediction using high-res image crops that provide more fine-grained image details than the full image. CropFormer is the first query-based Transformer architecture that can effectively ensemble mask predictions from multiple image crops, by learning queries that can associate the same entities across the full image and its crop. With CropFormer, we achieve a significant AP gain of $1.9$ on the challenging fine-grained entity segmentation task. The dataset and code will be released at http://luqi.info/entityv2.github.io/.
Abstract:Neural Radiance Fields (NeRF) has been wildly applied to various tasks for its high-quality representation of 3D scenes. It takes long per-scene training time and per-image testing time. In this paper, we present EfficientNeRF as an efficient NeRF-based method to represent 3D scene and synthesize novel-view images. Although several ways exist to accelerate the training or testing process, it is still difficult to much reduce time for both phases simultaneously. We analyze the density and weight distribution of the sampled points then propose valid and pivotal sampling at the coarse and fine stage, respectively, to significantly improve sampling efficiency. In addition, we design a novel data structure to cache the whole scene during testing to accelerate the rendering speed. Overall, our method can reduce over 88\% of training time, reach rendering speed of over 200 FPS, while still achieving competitive accuracy. Experiments prove that our method promotes the practicality of NeRF in the real world and enables many applications.
Abstract:To segment 4K or 6K ultra high-resolution images needs extra computation consideration in image segmentation. Common strategies, such as down-sampling, patch cropping, and cascade model, cannot address well the balance issue between accuracy and computation cost. Motivated by the fact that humans distinguish among objects continuously from coarse to precise levels, we propose the Continuous Refinement Model~(CRM) for the ultra high-resolution segmentation refinement task. CRM continuously aligns the feature map with the refinement target and aggregates features to reconstruct these images' details. Besides, our CRM shows its significant generalization ability to fill the resolution gap between low-resolution training images and ultra high-resolution testing ones. We present quantitative performance evaluation and visualization to show that our proposed method is fast and effective on image segmentation refinement. Code will be released at https://github.com/dvlab-research/Entity.
Abstract:Spherical signals exist in many applications, e.g., planetary data, LiDAR scans and digitalization of 3D objects, calling for models that can process spherical data effectively. It does not perform well when simply projecting spherical data into the 2D plane and then using planar convolution neural networks (CNNs), because of the distortion from projection and ineffective translation equivariance. Actually, good principles of designing spherical CNNs are avoiding distortions and converting the shift equivariance property in planar CNNs to rotation equivariance in the spherical domain. In this work, we use partial differential operators (PDOs) to design a spherical equivariant CNN, PDO-e$\text{S}^\text{2}$CNN, which is exactly rotation equivariant in the continuous domain. We then discretize PDO-e$\text{S}^\text{2}$CNNs, and analyze the equivariance error resulted from discretization. This is the first time that the equivariance error is theoretically analyzed in the spherical domain. In experiments, PDO-e$\text{S}^\text{2}$CNNs show greater parameter efficiency and outperform other spherical CNNs significantly on several tasks.
Abstract:The convolution operation suffers from a limited receptive filed, while global modeling is fundamental to dense prediction tasks, such as semantic segmentation. In this paper, we apply graph convolution into the semantic segmentation task and propose an improved Laplacian. The graph reasoning is directly performed in the original feature space organized as a spatial pyramid. Different from existing methods, our Laplacian is data-dependent and we introduce an attention diagonal matrix to learn a better distance metric. It gets rid of projecting and re-projecting processes, which makes our proposed method a light-weight module that can be easily plugged into current computer vision architectures. More importantly, performing graph reasoning directly in the feature space retains spatial relationships and makes spatial pyramid possible to explore multiple long-range contextual patterns from different scales. Experiments on Cityscapes, COCO Stuff, PASCAL Context and PASCAL VOC demonstrate the effectiveness of our proposed methods on semantic segmentation. We achieve comparable performance with advantages in computational and memory overhead.
Abstract:The correspondence between residual networks and dynamical systems motivates researchers to unravel the physics of ResNets with well-developed tools in numeral methods of ODE systems. The Runge-Kutta-Fehlberg method is an adaptive time stepping that renders a good trade-off between the stability and efficiency. Can we also have an adaptive time stepping for ResNets to ensure both stability and performance? In this study, we analyze the effects of time stepping on the Euler method and ResNets. We establish a stability condition for ResNets with step sizes and weight parameters, and point out the effects of step sizes on the stability and performance. Inspired by our analyses, we develop an adaptive time stepping controller that is dependent on the parameters of the current step, and aware of previous steps. The controller is jointly optimized with the network training so that variable step sizes and evolution time can be adaptively adjusted. We conduct experiments on ImageNet and CIFAR to demonstrate the effectiveness. It is shown that our proposed method is able to improve both stability and accuracy without introducing additional overhead in inference phase.
Abstract:Convolutional neural networks (CNNs) have recently achieved great success in single-image super-resolution (SISR). However, these methods tend to produce over-smoothed outputs and miss some textural details. To solve these problems, we propose the Super-Resolution CliqueNet (SRCliqueNet) to reconstruct the high resolution (HR) image with better textural details in the wavelet domain. The proposed SRCliqueNet firstly extracts a set of feature maps from the low resolution (LR) image by the clique blocks group. Then we send the set of feature maps to the clique up-sampling module to reconstruct the HR image. The clique up-sampling module consists of four sub-nets which predict the high resolution wavelet coefficients of four sub-bands. Since we consider the edge feature properties of four sub-bands, the four sub-nets are connected to the others so that they can learn the coefficients of four sub-bands jointly. Finally we apply inverse discrete wavelet transform (IDWT) to the output of four sub-nets at the end of the clique up-sampling module to increase the resolution and reconstruct the HR image. Extensive quantitative and qualitative experiments on benchmark datasets show that our method achieves superior performance over the state-of-the-art methods.