Abstract:Multimodal embeddings serve as a bridge for aligning vision and language, with the two primary implementations -- CLIP-based and MLLM-based embedding models -- both limited to capturing only global semantic information. Although numerous studies have focused on fine-grained understanding, we observe that complex scenarios currently targeted by MLLM embeddings often involve a hybrid perceptual pattern of both global and fine-grained elements, thus necessitating a compatible fusion mechanism. In this paper, we propose Adaptive Global and Fine-grained perceptual Fusion for MLLM Embeddings (AGFF-Embed), a method that prompts the MLLM to generate multiple embeddings focusing on different dimensions of semantic information, which are then adaptively and smoothly aggregated. Furthermore, we adapt AGFF-Embed with the Explicit Gradient Amplification (EGA) technique to achieve in-batch hard negatives enhancement without requiring fine-grained editing of the dataset. Evaluation on the MMEB and MMVP-VLM benchmarks shows that AGFF-Embed comprehensively achieves state-of-the-art performance in both general and fine-grained understanding compared to other multimodal embedding models.
Abstract:Tokenization is fundamental to how language models represent and process text, yet the behavior of widely used BPE tokenizers has received far less study than model architectures and training. In this paper, we investigate intermediate merge residues in BPE vocabularies: tokens that are frequent during merge learning so that retained in the final vocabulary, but are mostly further merged and rarely emitted when tokenizing the corpus during tokenizer usage. Such low-frequency tokens not only waste vocabulary capacity but also increase vulnerability to adversarial or atypical inputs. We present a systematic empirical characterization of this phenomenon across commonly used tokenizers and introduce LiteToken, a simple method for removing residue tokens. Because the affected tokens are rarely used, pretrained models can often accommodate the modified tokenizer without additional fine-tuning. Experiments show that LiteToken reduces token fragmentation, reduces parameters, and improves robustness to noisy or misspelled inputs, while preserving overall performance.
Abstract:While Large Language Models (LLMs) have demonstrated strong math reasoning abilities through Reinforcement Learning with *Verifiable Rewards* (RLVR), many advanced mathematical problems are proof-based, with no guaranteed way to determine the authenticity of a proof by simple answer matching. To enable automatic verification, a Reward Model (RM) capable of reliably evaluating full proof processes is required. In this work, we design a *scalable* data-construction pipeline that, with minimal human effort, leverages LLMs to generate a large quantity of high-quality "**question-proof-check**" triplet data. By systematically varying problem sources, generation methods, and model configurations, we create diverse problem-proof pairs spanning multiple difficulty levels, linguistic styles, and error types, subsequently filtered through hierarchical human review for label alignment. Utilizing these data, we train a proof-checking RM, incorporating additional process reward and token weight balance to stabilize the RL process. Our experiments validate the model's scalability and strong performance from multiple perspectives, including reward accuracy, generalization ability and test-time guidance, providing important practical recipes and tools for strengthening LLM mathematical capabilities.
Abstract:Gradual domain adaptation (GDA) aims to mitigate domain shift by progressively adapting models from the source domain to the target domain via intermediate domains. However, real intermediate domains are often unavailable or ineffective, necessitating the synthesis of intermediate samples. Flow-based models have recently been used for this purpose by interpolating between source and target distributions; however, their training typically relies on sample-based log-likelihood estimation, which can discard useful information and thus degrade GDA performance. The key to addressing this limitation is constructing the intermediate domains via samples directly. To this end, we propose an Entropy-regularized Semi-dual Unbalanced Optimal Transport (E-SUOT) framework to construct intermediate domains. Specifically, we reformulate flow-based GDA as a Lagrangian dual problem and derive an equivalent semi-dual objective that circumvents the need for likelihood estimation. However, the dual problem leads to an unstable min-max training procedure. To alleviate this issue, we further introduce entropy regularization to convert it into a more stable alternative optimization procedure. Based on this, we propose a novel GDA training framework and provide theoretical analysis in terms of stability and generalization. Finally, extensive experiments are conducted to demonstrate the efficacy of the E-SUOT framework.
Abstract:Diffusion models (DMs) have shown promise for Time-Series Data Imputation (TSDI); however, their performance remains inconsistent in complex scenarios. We attribute this to two primary obstacles: (1) non-stationary temporal dynamics, which can bias the inference trajectory and lead to outlier-sensitive imputations; and (2) objective inconsistency, since imputation favors accurate pointwise recovery whereas DMs are inherently trained to generate diverse samples. To better understand these issues, we analyze DM-based TSDI process through a proximal-operator perspective and uncover that an implicit Wasserstein distance regularization inherent in the process hinders the model's ability to counteract non-stationarity and dissipative regularizer, thereby amplifying diversity at the expense of fidelity. Building on this insight, we propose a novel framework called SPIRIT (Semi-Proximal Transport Regularized time-series Imputation). Specifically, we introduce entropy-induced Bregman divergence to relax the mass preserving constraint in the Wasserstein distance, formulate the semi-proximal transport (SPT) discrepancy, and theoretically prove the robustness of SPT against non-stationarity. Subsequently, we remove the dissipative structure and derive the complete SPIRIT workflow, with SPT serving as the proximal operator. Extensive experiments demonstrate the effectiveness of the proposed SPIRIT approach.
Abstract:We study partial-feedback online learning, where each instance admits a set of correct labels, but the learner only observes one correct label per round; any prediction within the correct set is counted as correct. This model captures settings such as language generation, where multiple responses may be valid but data provide only a single reference. We give a near-complete characterization of minimax regret for both deterministic and randomized learners in the set-realizable regime, i.e., in the regime where sublinear regret is generally attainable. For deterministic learners, we introduce the Partial-Feedback Littlestone dimension (PFLdim) and show it precisely governs learnability and minimax regret; technically, PFLdim cannot be defined via the standard version space, requiring a new collection version space viewpoint and an auxiliary dimension used only in the proof. We further develop the Partial-Feedback Measure Shattering dimension (PMSdim) to obtain tight bounds for randomized learners. We identify broad conditions ensuring inseparability between deterministic and randomized learnability (e.g., finite Helly number or nested-inclusion label structure), and extend the argument to set-valued online learning, resolving an open question of Raman et al. [2024b]. Finally, we show a sharp separation from weaker realistic and agnostic variants: outside set realizability, the problem can become information-theoretically intractable, with linear regret possible even for $|H|=2$. This highlights the need for fundamentally new, noise-sensitive complexity measures to meaningfully characterize learnability beyond set realizability.
Abstract:This paper studies the AdamW-style Shampoo optimizer, an effective implementation of classical Shampoo that notably won the external tuning track of the AlgoPerf neural network training algorithm competition. Our analysis unifies one-sided and two-sided preconditioning and establishes the convergence rate $\frac{1}{K}\sum_{k=1}^K E\left[\|\nabla f(X_k)\|_*\right]\leq O(\frac{\sqrt{m+n}C}{K^{1/4}})$ measured by nuclear norm, where $K$ represents the iteration number, $(m,n)$ denotes the size of matrix parameters, and $C$ matches the constant in the optimal convergence rate of SGD. Theoretically, we have $\|\nabla f(X)\|_F\leq \|\nabla f(X)\|_*\leq \sqrt{m+n}\|\nabla f(X)\|_F$, supporting that our convergence rate can be considered to be analogous to the optimal $\frac{1}{K}\sum_{k=1}^KE\left[\|\nabla f(X_k)\|_F\right]\leq O(\frac{C}{K^{1/4}})$ convergence rate of SGD in the ideal case of $\|\nabla f(X)\|_*= Θ(\sqrt{m+n})\|\nabla f(X)\|_F$.




Abstract:With the advancement of powerful large-scale reasoning models, effectively evaluating the reasoning capabilities of these models has become increasingly important. However, existing benchmarks designed to assess the reasoning abilities of large models tend to be limited in scope and lack the flexibility to adapt their difficulty according to the evolving reasoning capacities of the models. To address this, we propose MorphoBench, a benchmark that incorporates multidisciplinary questions to evaluate the reasoning capabilities of large models and can adjust and update question difficulty based on the reasoning abilities of advanced models. Specifically, we curate the benchmark by selecting and collecting complex reasoning questions from existing benchmarks and sources such as Olympiad-level competitions. Additionally, MorphoBench adaptively modifies the analytical challenge of questions by leveraging key statements generated during the model's reasoning process. Furthermore, it includes questions generated using simulation software, enabling dynamic adjustment of benchmark difficulty with minimal resource consumption. We have gathered over 1,300 test questions and iteratively adjusted the difficulty of MorphoBench based on the reasoning capabilities of models such as o3 and GPT-5. MorphoBench enhances the comprehensiveness and validity of model reasoning evaluation, providing reliable guidance for improving both the reasoning abilities and scientific robustness of large models. The code has been released in https://github.com/OpenDCAI/MorphoBench.
Abstract:Symmetry is widely applied in problems such as the design of equivariant networks and the discovery of governing equations, but in complex scenarios, it is not known in advance. Most previous symmetry discovery methods are limited to linear symmetries, and recent attempts to discover nonlinear symmetries fail to explicitly get the Lie algebra subspace. In this paper, we propose LieNLSD, which is, to our knowledge, the first method capable of determining the number of infinitesimal generators with nonlinear terms and their explicit expressions. We specify a function library for the infinitesimal group action and aim to solve for its coefficient matrix, proving that its prolongation formula for differential equations, which governs dynamic data, is also linear with respect to the coefficient matrix. By substituting the central differences of the data and the Jacobian matrix of the trained neural network into the infinitesimal criterion, we get a system of linear equations for the coefficient matrix, which can then be solved using SVD. On top quark tagging and a series of dynamic systems, LieNLSD shows qualitative advantages over existing methods and improves the long rollout accuracy of neural PDE solvers by over 20% while applying to guide data augmentation. Code and data are available at https://github.com/hulx2002/LieNLSD.
Abstract:Spiking Neural Networks (SNNs) are a promising approach to low-power applications on neuromorphic hardware due to their energy efficiency. However, training SNNs is challenging because of the non-differentiable spike generation function. To address this issue, the commonly used approach is to adopt the backpropagation through time framework, while assigning the gradient of the non-differentiable function with some surrogates. Similarly, Binary Neural Networks (BNNs) also face the non-differentiability problem and rely on approximating gradients. However, the deep relationship between these two fields and how their training techniques can benefit each other has not been systematically researched. Furthermore, training binary-weight SNNs is even more difficult. In this work, we present a novel perspective on the dynamics of SNNs and their close connection to BNNs through an analysis of the backpropagation process. We demonstrate that training a feedforward SNN can be viewed as training a self-ensemble of a binary-activation neural network with noise injection. Drawing from this new understanding of SNN dynamics, we introduce the Self-Ensemble Inspired training method for (Binary-Weight) SNNs (SEI-BWSNN), which achieves high-performance results with low latency even for the case of the 1-bit weights. Specifically, we leverage a structure of multiple shortcuts and a knowledge distillation-based training technique to improve the training of (binary-weight) SNNs. Notably, by binarizing FFN layers in a Transformer architecture, our approach achieves 82.52% accuracy on ImageNet with only 2 time steps, indicating the effectiveness of our methodology and the potential of binary-weight SNNs.