Abstract:Leveraging persona information of users in Neural Response Generators (NRG) to perform personalized conversations has been considered as an attractive and important topic in the research of conversational agents over the past few years. Despite of the promising progresses achieved by recent studies in this field, persona information tends to be incorporated into neural networks in the form of user embeddings, with the expectation that the persona can be involved via the End-to-End learning. This paper proposes to adopt the personality-related characteristics of human conversations into variational response generators, by designing a specific conditional variational autoencoder based deep model with two new regularization terms employed to the loss function, so as to guide the optimization towards the direction of generating both persona-aware and relevant responses. Besides, to reasonably evaluate the performances of various persona modeling approaches, this paper further presents three direct persona-oriented metrics from different perspectives. The experimental results have shown that our proposed methodology can notably improve the performance of persona-aware response generation, and the metrics are reasonable to evaluate the results.
Abstract:Self-attention networks (SANs) have drawn increasing interest due to their high parallelization in computation and flexibility in modeling dependencies. SANs can be further enhanced with multi-head attention by allowing the model to attend to information from different representation subspaces. In this work, we propose novel convolutional self-attention networks, which offer SANs the abilities to 1) strengthen dependencies among neighboring elements, and 2) model the interaction between features extracted by multiple attention heads. Experimental results of machine translation on different language pairs and model settings show that our approach outperforms both the strong Transformer baseline and other existing models on enhancing the locality of SANs. Comparing with prior studies, the proposed model is parameter free in terms of introducing no more parameters.
Abstract:Self-attention model have shown its flexibility in parallel computation and the effectiveness on modeling both long- and short-term dependencies. However, it calculates the dependencies between representations without considering the contextual information, which have proven useful for modeling dependencies among neural representations in various natural language tasks. In this work, we focus on improving self-attention networks through capturing the richness of context. To maintain the simplicity and flexibility of the self-attention networks, we propose to contextualize the transformations of the query and key layers, which are used to calculates the relevance between elements. Specifically, we leverage the internal representations that embed both global and deep contexts, thus avoid relying on external resources. Experimental results on WMT14 English-German and WMT17 Chinese-English translation tasks demonstrate the effectiveness and universality of the proposed methods. Furthermore, we conducted extensive analyses to quantity how the context vectors participate in the self-attention model.