Abstract:With the rising prevalence of cardiovascular and respiratory disorders and an aging global population, healthcare systems face increasing pressure to adopt efficient, non-contact vital sign monitoring (NCVSM) solutions. This study introduces a robust framework for multi-person localization and vital signs monitoring, using multiple-input-multiple-output frequency-modulated continuous wave radar, addressing challenges in real-world, cluttered environments. Two key contributions are presented. First, a custom hardware phantom was developed to simulate multi-person NCVSM scenarios, utilizing recorded thoracic impedance signals to replicate realistic cardiopulmonary dynamics. The phantom's design facilitates repeatable and rapid validation of radar systems and algorithms under diverse conditions to accelerate deployment in human monitoring. Second, aided by the phantom, we designed a robust algorithm for multi-person localization utilizing joint sparsity and cardiopulmonary properties, alongside harmonics-resilient dictionary-based vital signs estimation, to mitigate interfering respiration harmonics. Additionally, an adaptive signal refinement procedure is introduced to enhance the accuracy of continuous NCVSM by leveraging the continuity of the estimates. Performance was validated and compared to existing techniques through 12 phantom trials and 12 human trials, including both single- and multi-person scenarios, demonstrating superior localization and NCVSM performance. For example, in multi-person human trials, our method achieved average respiration rate estimation accuracies of 94.14%, 98.12%, and 98.69% within error thresholds of 2, 3, and 4 breaths per minute, respectively, and heart rate accuracies of 87.10%, 94.12%, and 95.54% within the same thresholds. These results highlight the potential of this framework for reliable multi-person NCVSM in healthcare and IoT applications.
Abstract:Non-contact technology for monitoring multiple people's vital signs, such as respiration and heartbeat, has been investigated in recent years due to the rising cardiopulmonary morbidity, the risk of transmitting diseases, and the heavy burden on the medical staff. Frequency modulated continuous wave (FMCW) radars have shown great promise in meeting these needs. However, contemporary techniques for non-contact vital signs monitoring (NCVSM) via FMCW radars, are based on simplistic models, and present difficulties coping with noisy environments containing multiple objects. In this work, we develop an extended model of FMCW radar signals in a noisy setting containing multiple people and clutter. By utilizing the sparse nature of the modeled signals in conjunction with human-typical cardiopulmonary features, we can accurately localize humans and reliably monitor their vital signs, using only a single channel and a single-input-single-output setup. To this end, we first show that spatial sparsity allows for both accurate detection of multiple people and computationally efficient extraction of their Doppler samples, using a joint sparse recovery approach. Given the extracted samples, we develop a method named Vital Signs based Dictionary Recovery (VSDR), which uses a dictionary-based approach to search for the desired rates of respiration and heartbeat over high-resolution grids corresponding to normal cardiopulmonary activity. The advantages of the proposed method are illustrated through examples that combine the proposed model with real data of $30$ monitored individuals. We demonstrate accurate human localization in a clutter-rich scenario that includes both static and vibrating objects, and show that our VSDR approach outperforms existing techniques, based on several statistical metrics. The findings support the widespread use of FMCW radars with the proposed algorithms in healthcare.