Abstract:Intelligent Tutoring Systems (ITSs) can provide personalized and self-paced learning experience. The emergence of large language models (LLMs) further enables better human-machine interaction, and facilitates the development of conversational ITSs in various disciplines such as math and language learning. In dialogic teaching, recognizing and adapting to individual characteristics can significantly enhance student engagement and learning efficiency. However, characterizing and simulating student's persona remain challenging in training and evaluating conversational ITSs. In this work, we propose a framework to construct profiles of different student groups by refining and integrating both cognitive and noncognitive aspects, and leverage LLMs for personality-aware student simulation in a language learning scenario. We further enhance the framework with multi-aspect validation, and conduct extensive analysis from both teacher and student perspectives. Our experimental results show that state-of-the-art LLMs can produce diverse student responses according to the given language ability and personality traits, and trigger teacher's adaptive scaffolding strategies.
Abstract:Intelligent tutoring systems (ITSs) that imitate human tutors and aim to provide immediate and customized instructions or feedback to learners have shown their effectiveness in education. With the emergence of generative artificial intelligence, large language models (LLMs) further entitle the systems to complex and coherent conversational interactions. These systems would be of great help in language education as it involves developing skills in communication, which, however, drew relatively less attention. Additionally, due to the complicated cognitive development at younger ages, more endeavors are needed for practical uses. Scaffolding refers to a teaching technique where teachers provide support and guidance to students for learning and developing new concepts or skills. It is an effective way to support diverse learning needs, goals, processes, and outcomes. In this work, we investigate how pedagogical instructions facilitate the scaffolding in ITSs, by conducting a case study on guiding children to describe images for language learning. We construct different types of scaffolding tutoring systems grounded in four fundamental learning theories: knowledge construction, inquiry-based learning, dialogic teaching, and zone of proximal development. For qualitative and quantitative analyses, we build and refine a seven-dimension rubric to evaluate the scaffolding process. In our experiment on GPT-4V, we observe that LLMs demonstrate strong potential to follow pedagogical instructions and achieve self-paced learning in different student groups. Moreover, we extend our evaluation framework from a manual to an automated approach, paving the way to benchmark various conversational tutoring systems.