Abstract:The rapid advancements in large language models (LLMs) have significantly enhanced natural language processing capabilities, facilitating the development of AudioLLMs that process and understand speech and audio inputs alongside text. Existing AudioLLMs typically combine a pre-trained audio encoder with a pre-trained LLM, which are subsequently finetuned on specific audio tasks. However, the pre-trained audio encoder has constrained capacity to capture features for new tasks and datasets. To address this, we propose to incorporate mixtures of `weak' encoders (MoWE) into the AudioLLM framework. MoWE supplements a base encoder with a pool of relatively light weight encoders, selectively activated based on the audio input to enhance feature extraction without significantly increasing model size. Our empirical results demonstrate that MoWE effectively improves multi-task performance, broadening the applicability of AudioLLMs to more diverse audio tasks.
Abstract:Universal fact-checking systems for real-world claims face significant challenges in gathering valid and sufficient real-time evidence and making reasoned decisions. In this work, we introduce the Open-domain Explainable Fact-checking (OE-Fact) system for claim-checking in real-world scenarios. The OE-Fact system can leverage the powerful understanding and reasoning capabilities of large language models (LLMs) to validate claims and generate causal explanations for fact-checking decisions. To adapt the traditional three-module fact-checking framework to the open domain setting, we first retrieve claim-related information as relevant evidence from open websites. After that, we retain the evidence relevant to the claim through LLM and similarity calculation for subsequent verification. We evaluate the performance of our adapted three-module OE-Fact system on the Fact Extraction and Verification (FEVER) dataset. Experimental results show that our OE-Fact system outperforms general fact-checking baseline systems in both closed- and open-domain scenarios, ensuring stable and accurate verdicts while providing concise and convincing real-time explanations for fact-checking decisions.
Abstract:We present SeaEval, a benchmark for multilingual foundation models. In addition to characterizing how these models understand and reason with natural language, we also investigate how well they comprehend cultural practices, nuances, and values. Alongside standard accuracy metrics, we investigate the brittleness of foundation models in the dimensions of semantics and multilinguality. Our analyses span both open-sourced and closed models, leading to empirical results across classic NLP tasks, reasoning, and cultural comprehension. Key findings indicate (1) Most models exhibit varied behavior when given paraphrased instructions. (2) Many models still suffer from exposure bias (e.g., positional bias, majority label bias). (3) For questions rooted in factual, scientific, and commonsense knowledge, consistent responses are expected across multilingual queries that are semantically equivalent. Yet, most models surprisingly demonstrate inconsistent performance on these queries. (4) Multilingually-trained models have not attained "balanced multilingual" capabilities. Our endeavors underscore the need for more generalizable semantic representations and enhanced multilingual contextualization. SeaEval can serve as a launchpad for more thorough investigations and evaluations for multilingual and multicultural scenarios.
Abstract:This study investigates machine translation between related languages i.e., languages within the same family that share similar linguistic traits such as word order and lexical similarity. Machine translation through few-shot prompting leverages a small set of translation pair examples to generate translations for test sentences. This requires the model to learn how to generate translations while simultaneously ensuring that token ordering is maintained to produce a fluent and accurate translation. We propose that for related languages, the task of machine translation can be simplified by leveraging the monotonic alignment characteristic of such languages. We introduce a novel approach of few-shot prompting that decomposes the translation process into a sequence of word chunk translations. Through evaluations conducted on multiple related language pairs across various language families, we demonstrate that our novel approach of decomposed prompting surpasses multiple established few-shot baseline models, thereby verifying its effectiveness. For example, our model outperforms the strong few-shot prompting BLOOM model with an average improvement of 4.2 chrF++ scores across the examined languages.
Abstract:Conversational Question Generation (CQG) is a critical task for machines to assist humans in fulfilling their information needs through conversations. The task is generally cast into two different settings: answer-aware and answer-unaware. While the former facilitates the models by exposing the expected answer, the latter is more realistic and receiving growing attentions recently. What-to-ask and how-to-ask are the two main challenges in the answer-unaware setting. To address the first challenge, existing methods mainly select sequential sentences in context as the rationales. We argue that the conversation generated using such naive heuristics may not be natural enough as in reality, the interlocutors often talk about the relevant contents that are not necessarily sequential in context. Additionally, previous methods decide the type of question to be generated (boolean/span-based) implicitly. Modeling the question type explicitly is crucial as the answer, which hints the models to generate a boolean or span-based question, is unavailable. To this end, we present SG-CQG, a two-stage CQG framework. For the what-to-ask stage, a sentence is selected as the rationale from a semantic graph that we construct, and extract the answer span from it. For the how-to-ask stage, a classifier determines the target answer type of the question via two explicit control signals before generating and filtering. In addition, we propose Conv-Distinct, a novel evaluation metric for CQG, to evaluate the diversity of the generated conversation from a context. Compared with the existing answer-unaware CQG models, the proposed SG-CQG achieves state-of-the-art performance.
Abstract:Conversational question generation (CQG) serves as a vital task for machines to assist humans, such as interactive reading comprehension, through conversations. Compared to traditional single-turn question generation (SQG), CQG is more challenging in the sense that the generated question is required not only to be meaningful, but also to align with the occurred conversation history. While previous studies mainly focus on how to model the flow and alignment of the conversation, there has been no thorough study to date on which parts of the context and history are necessary for the model. We argue that shortening the context and history is crucial as it can help the model to optimise more on the conversational alignment property. To this end, we propose CoHS-CQG, a two-stage CQG framework, which adopts a CoHS module to shorten the context and history of the input. In particular, CoHS selects contiguous sentences and history turns according to their relevance scores by a top-p strategy. Our model achieves state-of-the-art performances on CoQA in both the answer-aware and answer-unaware settings.
Abstract:Numerous recent work on unsupervised machine translation (UMT) implies that competent unsupervised translations of low-resource and unrelated languages, such as Nepali or Sinhala, are only possible if the model is trained in a massive multilingual environment, where theses low-resource languages are mixed with high-resource counterparts. Nonetheless, while the high-resource languages greatly help kick-start the target low-resource translation tasks, the language discrepancy between them may hinder their further improvement. In this work, we propose a simple refinement procedure to disentangle languages from a pre-trained multilingual UMT model for it to focus on only the target low-resource task. Our method achieves the state of the art in the fully unsupervised translation tasks of English to Nepali, Sinhala, Gujarati, Latvian, Estonian and Kazakh, with BLEU score gains of 3.5, 3.5, 3.3, 4.1, 4.2, and 3.3, respectively. Our codebase is available at https://github.com/nxphi47/refine_unsup_multilingual_mt
Abstract:Recent techniques in Question Answering (QA) have gained remarkable performance improvement with some QA models even surpassed human performance. However, the ability of these models in truly understanding the language still remains dubious and the models are revealing limitations when facing adversarial examples. To strengthen the robustness of QA models and their generalization ability, we propose a representation Enhancement via Semantic and Context constraints (ESC) approach to improve the robustness of lexical embeddings. Specifically, we insert perturbations with semantic constraints and train enhanced contextual representations via a context-constraint loss to better distinguish the context clues for the correct answer. Experimental results show that our approach gains significant robustness improvement on four adversarial test sets.
Abstract:Neural Machine Translation (NMT) has achieved significant breakthrough in performance but is known to suffer vulnerability to input perturbations. As real input noise is difficult to predict during training, robustness is a big issue for system deployment. In this paper, we improve the robustness of NMT models by reducing the effect of noisy words through a Context-Enhanced Reconstruction (CER) approach. CER trains the model to resist noise in two steps: (1) perturbation step that breaks the naturalness of input sequence with made-up words; (2) reconstruction step that defends the noise propagation by generating better and more robust contextual representation. Experimental results on Chinese-English (ZH-EN) and French-English (FR-EN) translation tasks demonstrate robustness improvement on both news and social media text. Further fine-tuning experiments on social media text show our approach can converge at a higher position and provide a better adaptation.
Abstract:Recent unsupervised machine translation (UMT) systems usually employ three main principles: initialization, language modeling and iterative back-translation, though they may apply these principles differently. This work introduces another component to this framework: Multi-Agent Cross-translated Diversification (MACD). The method trains multiple UMT agents and then translates monolingual data back and forth using non-duplicative agents to acquire synthetic parallel data for supervised MT. MACD is applicable to all previous UMT approaches. In our experiments, the technique boosts the performance for some commonly used UMT methods by 1.5-2.0 BLEU. In particular, in WMT'14 English-French, WMT'16 German-English and English-Romanian, MACD outperforms cross-lingual masked language model pretraining by 2.3, 2.2 and 1.6 BLEU, respectively. It also yields 1.5-3.3 BLEU improvements in IWSLT English-French and English-German translation tasks. Through extensive experimental analyses, we show that MACD is effective because it embraces data diversity while other similar variants do not.