Abstract:It is well known that translations generated by an excellent document-level neural machine translation (NMT) model are consistent and coherent. However, existing sentence-level evaluation metrics like BLEU can hardly reflect the model's performance at the document level. To tackle this issue, we propose a Discourse Cohesion Evaluation Method (DCoEM) in this paper and contribute a new test suite that considers four cohesive manners (reference, conjunction, substitution, and lexical cohesion) to measure the cohesiveness of document translations. The evaluation results on recent document-level NMT systems show that our method is practical and essential in estimating translations at the document level.
Abstract:Various neural-based methods have been proposed so far for joint mention detection and coreference resolution. However, existing works on coreference resolution are mainly dependent on filtered mention representation, while other spans are largely neglected. In this paper, we aim at increasing the utilization rate of data and investigating whether those eliminated spans are totally useless, or to what extent they can improve the performance of coreference resolution. To achieve this, we propose a mention representation refining strategy where spans highly related to mentions are well leveraged using a pointer network for representation enhancing. Notably, we utilize an additional loss term in this work to encourage the diversity between entity clusters. Experimental results on the document-level CoNLL-2012 Shared Task English dataset show that eliminated spans are indeed much effective and our approach can achieve competitive results when compared with previous state-of-the-art in coreference resolution.
Abstract:Due to its great importance in deep natural language understanding and various down-stream applications, text-level parsing of discourse rhetorical structure (DRS) has been drawing more and more attention in recent years. However, all the previous studies on text-level discourse parsing adopt bottom-up approaches, which much limit the DRS determination on local information and fail to well benefit from global information of the overall discourse. In this paper, we justify from both computational and perceptive points-of-view that the top-down architecture is more suitable for text-level DRS parsing. On the basis, we propose a top-down neural architecture toward text-level DRS parsing. In particular, we cast discourse parsing as a recursive split point ranking task, where a split point is classified to different levels according to its rank and the elementary discourse units (EDUs) associated with it are arranged accordingly. In this way, we can determine the complete DRS as a hierarchical tree structure via an encoder-decoder with an internal stack. Experimentation on both the English RST-DT corpus and the Chinese CDTB corpus shows the great effectiveness of our proposed top-down approach towards text-level DRS parsing.