Abstract:Marmoset, a highly vocalized primate, has become a popular animal model for studying social-communicative behavior and its underlying mechanism comparing with human infant linguistic developments. In the study of vocal communication, it is vital to know the caller identities, call contents, and vocal exchanges. Previous work of a CNN has achieved a joint model for call segmentation, classification, and caller identification for marmoset vocalizations. However, the CNN has limitations in modeling long-range acoustic patterns; the Transformer architecture that has been shown to outperform CNNs, utilizes the self-attention mechanism that efficiently segregates information parallelly over long distances and captures the global structure of marmoset vocalization. We propose using the Transformer to jointly segment and classify the marmoset calls and identify the callers for each vocalization.
Abstract:Marmoset, a highly vocalized primate, has become a popular animal model for studying social-communicative behavior and its underlying mechanism. In the study of vocal communication, it is vital to know the caller identities, call contents, and vocal exchanges. Previous work of a CNN has achieved a joint model for call segmentation, classification, and caller identification for marmoset vocalizations. However, the CNN has limitations in modeling long-range acoustic patterns; the Transformer architecture that has been shown to outperform CNNs, utilizes the self-attention mechanism that efficiently segregates information parallelly over long distances and captures the global structure of marmoset vocalization. We propose using the Transformer to jointly segment and classify the marmoset calls and identify the callers for each vocalization.
Abstract:Achieving high-resolution, identity consistency, and accurate lip-speech synchronization in face visual dubbing presents significant challenges, particularly for real-time applications like live video streaming. We propose MuseTalk, which generates lip-sync targets in a latent space encoded by a Variational Autoencoder, enabling high-fidelity talking face video generation with efficient inference. Specifically, we project the occluded lower half of the face image and itself as an reference into a low-dimensional latent space and use a multi-scale U-Net to fuse audio and visual features at various levels. We further propose a novel sampling strategy during training, which selects reference images with head poses closely matching the target, allowing the model to focus on precise lip movement by filtering out redundant information. Additionally, we analyze the mechanism of lip-sync loss and reveal its relationship with input information volume. Extensive experiments show that MuseTalk consistently outperforms recent state-of-the-art methods in visual fidelity and achieves comparable lip-sync accuracy. As MuseTalk supports the online generation of face at 256x256 at more than 30 FPS with negligible starting latency, it paves the way for real-time applications.
Abstract:Large language models (LLMs) have had a transformative impact on a variety of scientific tasks across disciplines such as biology, chemistry, medicine, and physics. However, ensuring the safety alignment of these models in scientific research remains an underexplored area, with existing benchmarks primarily focus on textual content and overlooking key scientific representations such as molecular, protein, and genomic languages. Moreover, the safety mechanisms of LLMs in scientific tasks are insufficiently studied. To address these limitations, we introduce SciSafeEval, a comprehensive benchmark designed to evaluate the safety alignment of LLMs across a range of scientific tasks. SciSafeEval spans multiple scientific languages - including textual, molecular, protein, and genomic - and covers a wide range of scientific domains. We evaluate LLMs in zero-shot, few-shot and chain-of-thought settings, and introduce a 'jailbreak' enhancement feature that challenges LLMs equipped with safety guardrails, rigorously testing their defenses against malicious intention. Our benchmark surpasses existing safety datasets in both scale and scope, providing a robust platform for assessing the safety and performance of LLMs in scientific contexts. This work aims to facilitate the responsible development and deployment of LLMs, promoting alignment with safety and ethical standards in scientific research.
Abstract:With the continuous breakthroughs in core technology, the dawn of large-scale integration of robotic systems into daily human life is on the horizon. Multi-robot systems (MRS) built on this foundation are undergoing drastic evolution. The fusion of artificial intelligence technology with robot hardware is seeing broad application possibilities for MRS. This article surveys the state-of-the-art of robot learning in the context of Multi-Robot Cooperation (MRC) of recent. Commonly adopted robot learning methods (or frameworks) that are inspired by humans and animals are reviewed and their advantages and disadvantages are discussed along with the associated technical challenges. The potential trends of robot learning and MRS integration exploiting the merging of these methods with real-world applications is also discussed at length. Specifically statistical methods are used to quantitatively corroborate the ideas elaborated in the article.
Abstract:Recently, researchers have investigated the capabilities of Large Language Models (LLMs) for generative recommender systems. Existing LLM-based recommender models are trained by adding user and item IDs to a discrete prompt template. However, the disconnect between IDs and natural language makes it difficult for the LLM to learn the relationship between users. To address this issue, we propose a PErsonAlized PrOmpt Distillation (PeaPOD) approach, to distill user preferences as personalized soft prompts. Considering the complexities of user preferences in the real world, we maintain a shared set of learnable prompts that are dynamically weighted based on the user's interests to construct the user-personalized prompt in a compositional manner. Experimental results on three real-world datasets demonstrate the effectiveness of our PeaPOD model on sequential recommendation, top-n recommendation, and explanation generation tasks.
Abstract:Augmenting Large Language Models (LLMs) with retrieved external knowledge has proven effective for improving the factual accuracy of generated responses. Despite their success, retrieval-augmented LLMs still face the distractibility issue, where the generated responses are negatively influenced by noise from both external and internal knowledge sources. In this paper, we introduce a novel, training-free decoding method guided by entropy considerations to mitigate this issue. Our approach utilizes entropy-based document-parallel ensemble decoding to prioritize low-entropy distributions from retrieved documents, thereby enhancing the extraction of relevant information of context. Additionally, it incorporates a contrastive decoding mechanism that contrasts the obtained low-entropy ensemble distribution with the high-entropy distribution derived from the model's internal knowledge across layers, which ensures a greater emphasis on reliable external information. Extensive experiments on open-domain question answering datasets demonstrate the superiority of our method.
Abstract:Utilizing user profiles to personalize Large Language Models (LLMs) has been shown to enhance the performance on a wide range of tasks. However, the precise role of user profiles and their effect mechanism on LLMs remains unclear. This study first confirms that the effectiveness of user profiles is primarily due to personalization information rather than semantic information. Furthermore, we investigate how user profiles affect the personalization of LLMs. Within the user profile, we reveal that it is the historical personalized response produced or approved by users that plays a pivotal role in personalizing LLMs. This discovery unlocks the potential of LLMs to incorporate a greater number of user profiles within the constraints of limited input length. As for the position of user profiles, we observe that user profiles integrated into different positions of the input context do not contribute equally to personalization. Instead, where the user profile that is closer to the beginning affects more on the personalization of LLMs. Our findings reveal the role of user profiles for the personalization of LLMs, and showcase how incorporating user profiles impacts performance providing insight to leverage user profiles effectively.
Abstract:Instruction tuning plays a crucial role in shaping the outputs of language models (LMs) to desired styles. In this work, we propose a simple yet effective method, Instruction Modelling (IM), which trains LMs by applying a loss function to the instruction and prompt part rather than solely to the output part. Through experiments across 21 diverse benchmarks, we show that, in many scenarios, IM can effectively improve the LM performance on both NLP tasks (e.g., MMLU, TruthfulQA, and HumanEval) and open-ended generation benchmarks (e.g., MT-Bench and AlpacaEval). Remarkably, in the most advantageous case, IM boosts model performance on AlpacaEval 1.0 by over 100%. We identify two key factors influencing the effectiveness of IM: (1) The ratio between instruction length and output length in the training data; and (2) The number of training examples. We observe that IM is especially beneficial when trained on datasets with lengthy instructions paired with brief outputs, or under the Superficial Alignment Hypothesis (SAH) where a small amount of training examples are used for instruction tuning. Further analysis substantiates our hypothesis that the improvement can be attributed to reduced overfitting to instruction tuning datasets. Our work provides practical guidance for instruction tuning LMs, especially in low-resource scenarios.
Abstract:Given the importance of ancient Chinese in capturing the essence of rich historical and cultural heritage, the rapid advancements in Large Language Models (LLMs) necessitate benchmarks that can effectively evaluate their understanding of ancient contexts. To meet this need, we present AC-EVAL, an innovative benchmark designed to assess the advanced knowledge and reasoning capabilities of LLMs within the context of ancient Chinese. AC-EVAL is structured across three levels of difficulty reflecting different facets of language comprehension: general historical knowledge, short text understanding, and long text comprehension. The benchmark comprises 13 tasks, spanning historical facts, geography, social customs, art, philosophy, classical poetry and prose, providing a comprehensive assessment framework. Our extensive evaluation of top-performing LLMs, tailored for both English and Chinese, reveals a substantial potential for enhancing ancient text comprehension. By highlighting the strengths and weaknesses of LLMs, AC-EVAL aims to promote their development and application forward in the realms of ancient Chinese language education and scholarly research. The AC-EVAL data and evaluation code are available at https://github.com/yuting-wei/AC-EVAL.