Abstract:We present Seedream 3.0, a high-performance Chinese-English bilingual image generation foundation model. We develop several technical improvements to address existing challenges in Seedream 2.0, including alignment with complicated prompts, fine-grained typography generation, suboptimal visual aesthetics and fidelity, and limited image resolutions. Specifically, the advancements of Seedream 3.0 stem from improvements across the entire pipeline, from data construction to model deployment. At the data stratum, we double the dataset using a defect-aware training paradigm and a dual-axis collaborative data-sampling framework. Furthermore, we adopt several effective techniques such as mixed-resolution training, cross-modality RoPE, representation alignment loss, and resolution-aware timestep sampling in the pre-training phase. During the post-training stage, we utilize diversified aesthetic captions in SFT, and a VLM-based reward model with scaling, thereby achieving outputs that well align with human preferences. Furthermore, Seedream 3.0 pioneers a novel acceleration paradigm. By employing consistent noise expectation and importance-aware timestep sampling, we achieve a 4 to 8 times speedup while maintaining image quality. Seedream 3.0 demonstrates significant improvements over Seedream 2.0: it enhances overall capabilities, in particular for text-rendering in complicated Chinese characters which is important to professional typography generation. In addition, it provides native high-resolution output (up to 2K), allowing it to generate images with high visual quality.
Abstract:This work presents SimpleAR, a vanilla autoregressive visual generation framework without complex architecure modifications. Through careful exploration of training and inference optimization, we demonstrate that: 1) with only 0.5B parameters, our model can generate 1024x1024 resolution images with high fidelity, and achieve competitive results on challenging text-to-image benchmarks, e.g., 0.59 on GenEval and 79.66 on DPG; 2) both supervised fine-tuning (SFT) and Group Relative Policy Optimization (GRPO) training could lead to significant improvements on generation aesthectics and prompt alignment; and 3) when optimized with inference acceleraton techniques like vLLM, the time for SimpleAR to generate an 1024x1024 image could be reduced to around 14 seconds. By sharing these findings and open-sourcing the code, we hope to reveal the potential of autoregressive visual generation and encourage more participation in this research field. Code is available at https://github.com/wdrink/SimpleAR.
Abstract:Diffusion transformers have demonstrated remarkable generation quality, albeit requiring longer training iterations and numerous inference steps. In each denoising step, diffusion transformers encode the noisy inputs to extract the lower-frequency semantic component and then decode the higher frequency with identical modules. This scheme creates an inherent optimization dilemma: encoding low-frequency semantics necessitates reducing high-frequency components, creating tension between semantic encoding and high-frequency decoding. To resolve this challenge, we propose a new \textbf{\color{ddt}D}ecoupled \textbf{\color{ddt}D}iffusion \textbf{\color{ddt}T}ransformer~(\textbf{\color{ddt}DDT}), with a decoupled design of a dedicated condition encoder for semantic extraction alongside a specialized velocity decoder. Our experiments reveal that a more substantial encoder yields performance improvements as model size increases. For ImageNet $256\times256$, Our DDT-XL/2 achieves a new state-of-the-art performance of {1.31 FID}~(nearly $4\times$ faster training convergence compared to previous diffusion transformers). For ImageNet $512\times512$, Our DDT-XL/2 achieves a new state-of-the-art FID of 1.28. Additionally, as a beneficial by-product, our decoupled architecture enhances inference speed by enabling the sharing self-condition between adjacent denoising steps. To minimize performance degradation, we propose a novel statistical dynamic programming approach to identify optimal sharing strategies.
Abstract:Rapid advancement of diffusion models has catalyzed remarkable progress in the field of image generation. However, prevalent models such as Flux, SD3.5 and Midjourney, still grapple with issues like model bias, limited text rendering capabilities, and insufficient understanding of Chinese cultural nuances. To address these limitations, we present Seedream 2.0, a native Chinese-English bilingual image generation foundation model that excels across diverse dimensions, which adeptly manages text prompt in both Chinese and English, supporting bilingual image generation and text rendering. We develop a powerful data system that facilitates knowledge integration, and a caption system that balances the accuracy and richness for image description. Particularly, Seedream is integrated with a self-developed bilingual large language model as a text encoder, allowing it to learn native knowledge directly from massive data. This enable it to generate high-fidelity images with accurate cultural nuances and aesthetic expressions described in either Chinese or English. Beside, Glyph-Aligned ByT5 is applied for flexible character-level text rendering, while a Scaled ROPE generalizes well to untrained resolutions. Multi-phase post-training optimizations, including SFT and RLHF iterations, further improve the overall capability. Through extensive experimentation, we demonstrate that Seedream 2.0 achieves state-of-the-art performance across multiple aspects, including prompt-following, aesthetics, text rendering, and structural correctness. Furthermore, Seedream 2.0 has been optimized through multiple RLHF iterations to closely align its output with human preferences, as revealed by its outstanding ELO score. In addition, it can be readily adapted to an instruction-based image editing model, such as SeedEdit, with strong editing capability that balances instruction-following and image consistency.
Abstract:This paper develops a comprehensive framework to address three critical trustworthy challenges in federated learning (FL): robustness against Byzantine attacks, fairness, and privacy preservation. To improve the system's defense against Byzantine attacks that send malicious information to bias the system's performance, we develop a Two-sided Norm Based Screening (TNBS) mechanism, which allows the central server to crop the gradients that have the l lowest norms and h highest norms. TNBS functions as a screening tool to filter out potential malicious participants whose gradients are far from the honest ones. To promote egalitarian fairness, we adopt the q-fair federated learning (q-FFL). Furthermore, we adopt a differential privacy-based scheme to prevent raw data at local clients from being inferred by curious parties. Convergence guarantees are provided for the proposed framework under different scenarios. Experimental results on real datasets demonstrate that the proposed framework effectively improves robustness and fairness while managing the trade-off between privacy and accuracy. This work appears to be the first study that experimentally and theoretically addresses fairness, privacy, and robustness in trustworthy FL.
Abstract:The rapid growth of Internet of Things (IoT) has led to the widespread deployment of smart IoT devices at wireless edge for collaborative machine learning tasks, ushering in a new era of edge learning. With a huge number of hardware-constrained IoT devices operating in resource-limited wireless networks, edge learning encounters substantial challenges, including communication and computation bottlenecks, device and data heterogeneity, security risks, privacy leakages, non-convex optimization, and complex wireless environments. To address these issues, this article explores a novel framework known as distributed swarm learning (DSL), which combines artificial intelligence and biological swarm intelligence in a holistic manner. By harnessing advanced signal processing and communications, DSL provides efficient solutions and robust tools for large-scale IoT at the edge of wireless networks.
Abstract:Scaling law principles indicate a power-law correlation between loss and variables such as model size, dataset size, and computational resources utilized during training. These principles play a vital role in optimizing various aspects of model pre-training, ultimately contributing to the success of large language models such as GPT-4, Llama and Gemini. However, the original scaling law paper by OpenAI did not disclose the complete details necessary to derive the precise scaling law formulas, and their conclusions are only based on models containing up to 1.5 billion parameters. Though some subsequent works attempt to unveil these details and scale to larger models, they often neglect the training dependency of important factors such as the learning rate, context length and batch size, leading to their failure to establish a reliable formula for predicting the test loss trajectory. In this technical report, we confirm that the scaling law formulations proposed in the original OpenAI paper remain valid when scaling the model size up to 33 billion, but the constant coefficients in these formulas vary significantly with the experiment setup. We meticulously identify influential factors and provide transparent, step-by-step instructions to estimate all constant terms in scaling-law formulas by training on models with only 1M~60M parameters. Using these estimated formulas, we showcase the capability to accurately predict various attributes for models with up to 33B parameters before their training, including (1) the minimum possible test loss; (2) the minimum required training steps and processed tokens to achieve a specific loss; (3) the critical batch size with an optimal time/computation trade-off at any loss value; and (4) the complete test loss trajectory with arbitrary batch size.
Abstract:Current traditional methods for LiDAR-camera extrinsics estimation depend on offline targets and human efforts, while learning-based approaches resort to iterative refinement for calibration results, posing constraints on their generalization and application in on-board systems. In this paper, we propose a novel approach to address the extrinsic calibration problem in a robust, automatic, and single-shot manner. Instead of directly optimizing extrinsics, we leverage the consistency learning between LiDAR and camera to implement implicit re-calibartion. Specially, we introduce an appearance-consistency loss and a geometric-consistency loss to minimizing the inconsitency between the attrbutes (e.g., intensity and depth) of projected LiDAR points and the predicted ones. This design not only enhances adaptability to various scenarios but also enables a simple and efficient formulation during inference. We conduct comprehensive experiments on different datasets, and the results demonstrate that our method achieves accurate and robust performance. To promote further research and development in this area, we will release our model and code.
Abstract:This paper studies distributed online learning under Byzantine attacks. The performance of an online learning algorithm is often characterized by (adversarial) regret, which evaluates the quality of one-step-ahead decision-making when an environment provides adversarial losses, and a sublinear bound is preferred. But we prove that, even with a class of state-of-the-art robust aggregation rules, in an adversarial environment and in the presence of Byzantine participants, distributed online gradient descent can only achieve a linear adversarial regret bound, which is tight. This is the inevitable consequence of Byzantine attacks, even though we can control the constant of the linear adversarial regret to a reasonable level. Interestingly, when the environment is not fully adversarial so that the losses of the honest participants are i.i.d. (independent and identically distributed), we show that sublinear stochastic regret, in contrast to the aforementioned adversarial regret, is possible. We develop a Byzantine-robust distributed online momentum algorithm to attain such a sublinear stochastic regret bound. Extensive numerical experiments corroborate our theoretical analysis.
Abstract:We explore the capability of plain Vision Transformers (ViTs) for semantic segmentation using the encoder-decoder framework and introduce SegViTv2. In our work, we implement the decoder with the global attention mechanism inherent in ViT backbones and propose the lightweight Attention-to-Mask module that effectively converts the global attention map into semantic masks for high-quality segmentation results. Our decoder can outperform the most commonly-used decoder UpperNet in various ViT backbones while consuming only about 5\% of the computational cost. For the encoder, we address the concern of the relatively high computational cost in the ViT-based encoders and propose a Shrunk++ structure that incorporates edge-aware query-based down-sampling (EQD) and query-based up-sampling (QU) modules. The Shrunk++ structure reduces the computational cost of the encoder by up to $50\%$ while maintaining competitive performance. Furthermore, due to the flexibility of our ViT-based architecture, SegVit can be easily extended to semantic segmentation under the setting of continual learning, achieving nearly zero forgetting. Experiments show that our proposed SegViT outperforms recent segmentation methods on three popular benchmarks including ADE20k, COCO-Stuff-10k and PASCAL-Context datasets. The code is available through the following link: \url{https://github.com/zbwxp/SegVit}.