Abstract:Recent advances in Large Language Models (LLMs) have been changing the paradigm of Recommender Systems (RS). However, when items in the recommendation scenarios contain rich textual information, such as product descriptions in online shopping or news headlines on social media, LLMs require longer texts to comprehensively depict the historical user behavior sequence. This poses significant challenges to LLM-based recommenders, such as over-length limitations, extensive time and space overheads, and suboptimal model performance. To this end, in this paper, we design a novel framework for harnessing Large Language Models for Text-Rich Sequential Recommendation (LLM-TRSR). Specifically, we first propose to segment the user historical behaviors and subsequently employ an LLM-based summarizer for summarizing these user behavior blocks. Particularly, drawing inspiration from the successful application of Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN) models in user modeling, we introduce two unique summarization techniques in this paper, respectively hierarchical summarization and recurrent summarization. Then, we construct a prompt text encompassing the user preference summary, recent user interactions, and candidate item information into an LLM-based recommender, which is subsequently fine-tuned using Supervised Fine-Tuning (SFT) techniques to yield our final recommendation model. We also use Low-Rank Adaptation (LoRA) for Parameter-Efficient Fine-Tuning (PEFT). We conduct experiments on two public datasets, and the results clearly demonstrate the effectiveness of our approach.
Abstract:The rapidly changing landscape of technology and industries leads to dynamic skill requirements, making it crucial for employees and employers to anticipate such shifts to maintain a competitive edge in the labor market. Existing efforts in this area either rely on domain-expert knowledge or regarding skill evolution as a simplified time series forecasting problem. However, both approaches overlook the sophisticated relationships among different skills and the inner-connection between skill demand and supply variations. In this paper, we propose a Cross-view Hierarchical Graph learning Hypernetwork (CHGH) framework for joint skill demand-supply prediction. Specifically, CHGH is an encoder-decoder network consisting of i) a cross-view graph encoder to capture the interconnection between skill demand and supply, ii) a hierarchical graph encoder to model the co-evolution of skills from a cluster-wise perspective, and iii) a conditional hyper-decoder to jointly predict demand and supply variations by incorporating historical demand-supply gaps. Extensive experiments on three real-world datasets demonstrate the superiority of the proposed framework compared to seven baselines and the effectiveness of the three modules.
Abstract:Large Language Models (LLMs) have revolutionized natural language processing tasks, demonstrating their exceptional capabilities in various domains. However, their potential for behavior graph understanding in job recommendations remains largely unexplored. This paper focuses on unveiling the capability of large language models in understanding behavior graphs and leveraging this understanding to enhance recommendations in online recruitment, including the promotion of out-of-distribution (OOD) application. We present a novel framework that harnesses the rich contextual information and semantic representations provided by large language models to analyze behavior graphs and uncover underlying patterns and relationships. Specifically, we propose a meta-path prompt constructor that leverages LLM recommender to understand behavior graphs for the first time and design a corresponding path augmentation module to alleviate the prompt bias introduced by path-based sequence input. By leveraging this capability, our framework enables personalized and accurate job recommendations for individual users. We evaluate the effectiveness of our approach on a comprehensive dataset and demonstrate its ability to improve the relevance and quality of recommended quality. This research not only sheds light on the untapped potential of large language models but also provides valuable insights for developing advanced recommendation systems in the recruitment market. The findings contribute to the growing field of natural language processing and offer practical implications for enhancing job search experiences.
Abstract:The rapid development of online recruitment services has encouraged the utilization of recommender systems to streamline the job seeking process. Predominantly, current job recommendations deploy either collaborative filtering or person-job matching strategies. However, these models tend to operate as "black-box" systems and lack the capacity to offer explainable guidance to job seekers. Moreover, conventional matching-based recommendation methods are limited to retrieving and ranking existing jobs in the database, restricting their potential as comprehensive career AI advisors. To this end, here we present GIRL (GeneratIve job Recommendation based on Large language models), a novel approach inspired by recent advancements in the field of Large Language Models (LLMs). We initially employ a Supervised Fine-Tuning (SFT) strategy to instruct the LLM-based generator in crafting suitable Job Descriptions (JDs) based on the Curriculum Vitae (CV) of a job seeker. Moreover, we propose to train a model which can evaluate the matching degree between CVs and JDs as a reward model, and we use Proximal Policy Optimization (PPO)-based Reinforcement Learning (RL) method to further fine-tine the generator. This aligns the generator with recruiter feedback, tailoring the output to better meet employer preferences. In particular, GIRL serves as a job seeker-centric generative model, providing job suggestions without the need of a candidate set. This capability also enhances the performance of existing job recommendation models by supplementing job seeking features with generated content. With extensive experiments on a large-scale real-world dataset, we demonstrate the substantial effectiveness of our approach. We believe that GIRL introduces a paradigm-shifting approach to job recommendation systems, fostering a more personalized and comprehensive job-seeking experience.
Abstract:Large Language Models (LLMs) have emerged as powerful tools in the field of Natural Language Processing (NLP) and have recently gained significant attention in the domain of Recommendation Systems (RS). These models, trained on massive amounts of data using self-supervised learning, have demonstrated remarkable success in learning universal representations and have the potential to enhance various aspects of recommendation systems by some effective transfer techniques such as fine-tuning and prompt tuning, and so on. The crucial aspect of harnessing the power of language models in enhancing recommendation quality is the utilization of their high-quality representations of textual features and their extensive coverage of external knowledge to establish correlations between items and users. To provide a comprehensive understanding of the existing LLM-based recommendation systems, this survey presents a taxonomy that categorizes these models into two major paradigms, respectively Discriminative LLM for Recommendation (DLLM4Rec) and Generative LLM for Recommendation (GLLM4Rec), with the latter being systematically sorted out for the first time. Furthermore, we systematically review and analyze existing LLM-based recommendation systems within each paradigm, providing insights into their methodologies, techniques, and performance. Additionally, we identify key challenges and several valuable findings to provide researchers and practitioners with inspiration. We have also created a GitHub repository to index relevant papers on LLMs for recommendation, https://github.com/WLiK/LLM4Rec.
Abstract:Generative Pre-Training (GPT) models like ChatGPT have demonstrated exceptional performance in various Natural Language Processing (NLP) tasks. Although ChatGPT has been integrated into the overall workflow to boost efficiency in many domains, the lack of flexibility in the finetuning process hinders its applications in areas that demand extensive domain expertise and semantic knowledge, such as healthcare. In this paper, we evaluate ChatGPT on the China National Medical Licensing Examination (CNMLE) and propose a novel approach to improve ChatGPT from two perspectives: integrating medical domain knowledge and enabling few-shot learning. By using a simple but effective retrieval method, medical background knowledge is extracted as semantic instructions to guide the inference of ChatGPT. Similarly, relevant medical questions are identified and fed as demonstrations to ChatGPT. Experimental results show that directly applying ChatGPT fails to qualify the CNMLE at a score of 51 (i.e., only 51\% of questions are answered correctly). While our knowledge-enhanced model achieves a high score of 70 on CNMLE-2022 which not only passes the qualification but also surpasses the average score of humans (61). This research demonstrates the potential of knowledge-enhanced ChatGPT to serve as versatile medical assistants, capable of analyzing real-world medical problems in a more accessible, user-friendly, and adaptable manner.
Abstract:News recommendation is different from movie or e-commercial recommendation as people usually do not grade the news. Therefore, user feedback for news is always implicit (click behavior, reading time, etc). Inevitably, there are noises in implicit feedback. On one hand, the user may exit immediately after clicking the news as he dislikes the news content, leaving the noise in his positive implicit feedback; on the other hand, the user may be recommended multiple interesting news at the same time and only click one of them, producing the noise in his negative implicit feedback. Opposite implicit feedback could construct more integrated user preferences and help each other to minimize the noise influence. Previous works on news recommendation only used positive implicit feedback and suffered from the noise impact. In this paper, we propose a denoising neural network for news recommendation with positive and negative implicit feedback, named DRPN. DRPN utilizes both feedback for recommendation with a module to denoise both positive and negative implicit feedback to further enhance the performance. Experiments on the real-world large-scale dataset demonstrate the state-of-the-art performance of DRPN.
Abstract:Medication recommendation targets to provide a proper set of medicines according to patients' diagnoses, which is a critical task in clinics. Currently, the recommendation is manually conducted by doctors. However, for complicated cases, like patients with multiple diseases at the same time, it's difficult to propose a considerate recommendation even for experienced doctors. This urges the emergence of automatic medication recommendation which can help treat the diagnosed diseases without causing harmful drug-drug interactions.Due to the clinical value, medication recommendation has attracted growing research interests.Existing works mainly formulate medication recommendation as a multi-label classification task to predict the set of medicines. In this paper, we propose the Conditional Generation Net (COGNet) which introduces a novel copy-or-predict mechanism to generate the set of medicines. Given a patient, the proposed model first retrieves his or her historical diagnoses and medication recommendations and mines their relationship with current diagnoses. Then in predicting each medicine, the proposed model decides whether to copy a medicine from previous recommendations or to predict a new one. This process is quite similar to the decision process of human doctors. We validate the proposed model on the public MIMIC data set, and the experimental results show that the proposed model can outperform state-of-the-art approaches.
Abstract:To assess the knowledge proficiency of a learner, multiple choice question is an efficient and widespread form in standard tests. However, the composition of the multiple choice question, especially the construction of distractors is quite challenging. The distractors are required to both incorrect and plausible enough to confuse the learners who did not master the knowledge. Currently, the distractors are generated by domain experts which are both expensive and time-consuming. This urges the emergence of automatic distractor generation, which can benefit various standard tests in a wide range of domains. In this paper, we propose a question and answer guided distractor generation (EDGE) framework to automate distractor generation. EDGE consists of three major modules: (1) the Reforming Question Module and the Reforming Passage Module apply gate layers to guarantee the inherent incorrectness of the generated distractors; (2) the Distractor Generator Module applies attention mechanism to control the level of plausibility. Experimental results on a large-scale public dataset demonstrate that our model significantly outperforms existing models and achieves a new state-of-the-art.