Abstract:Scientific collaboration is a significant behavior in knowledge creation and idea exchange. To tackle large and complex research questions, a trend of team formation has been observed in recent decades. In this study, we focus on recognizing collaborative teams and exploring inner patterns using scholarly big graph data. We propose a collaborative team recognition (CORE) model with a "core + extension" team structure to recognize collaborative teams in large academic networks. In CORE, we combine an effective evaluation index called the collaboration intensity index with a series of structural features to recognize collaborative teams in which members are in close collaboration relationships. Then, CORE is used to guide the core team members to their extension members. CORE can also serve as the foundation for team-based research. The simulation results indicate that CORE reveals inner patterns of scientific collaboration: senior scholars have broad collaborative relationships and fixed collaboration patterns, which are the underlying mechanisms of team assembly. The experimental results demonstrate that CORE is promising compared with state-of-the-art methods.
Abstract:Advisor-advisee relationship is important in academic networks due to its universality and necessity. Despite the increasing desire to analyze the career of newcomers, however, the outcomes of different collaboration patterns between advisors and advisees remain unknown. The purpose of this paper is to find out the correlation between advisors' academic characteristics and advisees' academic performance in Computer Science. Employing both quantitative and qualitative analysis, we find that with the increase of advisors' academic age, advisees' performance experiences an initial growth, follows a sustaining stage, and finally ends up with a declining trend. We also discover the phenomenon that accomplished advisors can bring up skilled advisees. We explore the conclusion from two aspects: (1) Advisees mentored by advisors with high academic level have better academic performance than the rest; (2) Advisors with high academic level can raise their advisees' h-index ranking. This work provides new insights on promoting our understanding of the relationship between advisors' academic characteristics and advisees' performance, as well as on advisor choosing.