Abstract:Continuum robots can be miniaturized to just a few millimeters in diameter. Among these, notched tubular continuum robots (NTCR) show great potential in many delicate applications. Existing works in robotic modeling focus on kinematics and dynamics but still face challenges in reproducing the robot's morphology -- a significant factor that can expand the research landscape of continuum robots, especially for those with asymmetric continuum structures. This paper proposes a dual stereo vision-based method for the three-dimensional morphological reconstruction of millimeter-scale NTCRs. The method employs two oppositely located stationary binocular cameras to capture the point cloud of the NTCR, then utilizes predefined geometry as a reference for the KD tree method to relocate the capture point clouds, resulting in a morphologically correct NTCR despite the low-quality raw point cloud collection. The method has been proved feasible for an NTCR with a 3.5 mm diameter, capturing 14 out of 16 notch features, with the measurements generally centered around the standard of 1.5 mm, demonstrating the capability of revealing morphological details. Our proposed method paves the way for 3D morphological reconstruction of millimeter-scale soft robots for further self-modeling study.
Abstract:Robotic-assisted tracheal intubation requires the robot to distinguish anatomical features like an experienced physician using deep-learning techniques. However, real datasets of oropharyngeal organs are limited due to patient privacy issues, making it challenging to train deep-learning models for accurate image segmentation. We hereby consider generating a new data modality through a virtual environment to assist the training process. Specifically, this work introduces a virtual dataset generated by the Simulation Open Framework Architecture (SOFA) framework to overcome the limited availability of actual endoscopic images. We also propose a domain adaptive Sim-to-Real method for oropharyngeal organ image segmentation, which employs an image blending strategy called IoU-Ranking Blend (IRB) and style-transfer techniques to address discrepancies between datasets. Experimental results demonstrate the superior performance of the proposed approach with domain adaptive models, improving segmentation accuracy and training stability. In the practical application, the trained segmentation model holds great promise for robot-assisted intubation surgery and intelligent surgical navigation.
Abstract:Video-assisted transoral tracheal intubation (TI) necessitates using an endoscope that helps the physician insert a tracheal tube into the glottis instead of the esophagus. The growing trend of robotic-assisted TI would require a medical robot to distinguish anatomical features like an experienced physician which can be imitated by utilizing supervised deep-learning techniques. However, the real datasets of oropharyngeal organs are often inaccessible due to limited open-source data and patient privacy. In this work, we propose a domain adaptive Sim-to-Real framework called IoU-Ranking Blend-ArtFlow (IRB-AF) for image segmentation of oropharyngeal organs. The framework includes an image blending strategy called IoU-Ranking Blend (IRB) and style-transfer method ArtFlow. Here, IRB alleviates the problem of poor segmentation performance caused by significant datasets domain differences; while ArtFlow is introduced to reduce the discrepancies between datasets further. A virtual oropharynx image dataset generated by the SOFA framework is used as the learning subject for semantic segmentation to deal with the limited availability of actual endoscopic images. We adapted IRB-AF with the state-of-the-art domain adaptive segmentation models. The results demonstrate the superior performance of our approach in further improving the segmentation accuracy and training stability.