Abstract:Collaborative filtering on user-item interaction graphs has achieved success in the industrial recommendation. However, recommending users' truly fascinated items poses a seesaw dilemma for collaborative filtering models learned from the interaction graph. On the one hand, not all items that users interact with are equally appealing. Some items are genuinely fascinating to users, while others are unfascinated. Training graph collaborative filtering models in the absence of distinction between them can lead to the recommendation of unfascinating items to users. On the other hand, disregarding the interacted but unfascinating items during graph collaborative filtering will result in an incomplete representation of users' interaction intent, leading to a decline in the model's recommendation capabilities. To address this seesaw problem, we propose Feedback Reciprocal Graph Collaborative Filtering (FRGCF), which emphasizes the recommendation of fascinating items while attenuating the recommendation of unfascinating items. Specifically, FRGCF first partitions the entire interaction graph into the Interacted & Fascinated (I&F) graph and the Interacted & Unfascinated (I&U) graph based on the user feedback. Then, FRGCF introduces separate collaborative filtering on the I&F graph and the I&U graph with feedback-reciprocal contrastive learning and macro-level feedback modeling. This enables the I&F graph recommender to learn multi-grained interaction characteristics from the I&U graph without being misdirected by it. Extensive experiments on four benchmark datasets and a billion-scale industrial dataset demonstrate that FRGCF improves the performance by recommending more fascinating items and fewer unfascinating items. Besides, online A/B tests on Taobao's recommender system verify the superiority of FRGCF.
Abstract:Representing the information of multiple behaviors in the single graph collaborative filtering (CF) vector has been a long-standing challenge. This is because different behaviors naturally form separate behavior graphs and learn separate CF embeddings. Existing models merge the separate embeddings by appointing the CF embeddings for some behaviors as the primary embedding and utilizing other auxiliaries to enhance the primary embedding. However, this approach often results in the joint embedding performing well on the main tasks but poorly on the auxiliary ones. To address the problem arising from the separate behavior graphs, we propose the concept of Partial Order Graphs (POG). POG defines the partial order relation of multiple behaviors and models behavior combinations as weighted edges to merge separate behavior graphs into a joint POG. Theoretical proof verifies that POG can be generalized to any given set of multiple behaviors. Based on POG, we propose the tailored Partial Order Graph Convolutional Networks (POGCN) that convolute neighbors' information while considering the behavior relations between users and items. POGCN also introduces a partial-order BPR sampling strategy for efficient and effective multiple-behavior CF training. POGCN has been successfully deployed on the homepage of Alibaba for two months, providing recommendation services for over one billion users. Extensive offline experiments conducted on three public benchmark datasets demonstrate that POGCN outperforms state-of-the-art multi-behavior baselines across all types of behaviors. Furthermore, online A/B tests confirm the superiority of POGCN in billion-scale recommender systems.
Abstract:Predicting Click-Through Rate (CTR) in billion-scale recommender systems poses a long-standing challenge for Graph Neural Networks (GNNs) due to the overwhelming computational complexity involved in aggregating billions of neighbors. To tackle this, GNN-based CTR models usually sample hundreds of neighbors out of the billions to facilitate efficient online recommendations. However, sampling only a small portion of neighbors results in a severe sampling bias and the failure to encompass the full spectrum of user or item behavioral patterns. To address this challenge, we name the conventional user-item recommendation graph as "micro recommendation graph" and introduce a more suitable MAcro Recommendation Graph (MAG) for billion-scale recommendations. MAG resolves the computational complexity problems in the infrastructure by reducing the node count from billions to hundreds. Specifically, MAG groups micro nodes (users and items) with similar behavior patterns to form macro nodes. Subsequently, we introduce tailored Macro Graph Neural Networks (MacGNN) to aggregate information on a macro level and revise the embeddings of macro nodes. MacGNN has already served Taobao's homepage feed for two months, providing recommendations for over one billion users. Extensive offline experiments on three public benchmark datasets and an industrial dataset present that MacGNN significantly outperforms twelve CTR baselines while remaining computationally efficient. Besides, online A/B tests confirm MacGNN's superiority in billion-scale recommender systems.
Abstract:Integrated recommendation, which aims at jointly recommending heterogeneous items from different channels in a main feed, has been widely applied to various online platforms. Though attractive, integrated recommendation requires the ranking methods to migrate from conventional user-item models to the new user-channel-item paradigm in order to better capture users' preferences on both item and channel levels. Moreover, practical feed recommendation systems usually impose exposure constraints on different channels to ensure user experience. This leads to greater difficulty in the joint ranking of heterogeneous items. In this paper, we investigate the integrated recommendation task with exposure constraints in practical recommender systems. Our contribution is forth-fold. First, we formulate this task as a binary online linear programming problem and propose a two-layer framework named Multi-channel Integrated Recommendation with Exposure Constraints (MIREC) to obtain the optimal solution. Second, we propose an efficient online allocation algorithm to determine the optimal exposure assignment of different channels from a global view of all user requests over the entire time horizon. We prove that this algorithm reaches the optimal point under a regret bound of $ \mathcal{O}(\sqrt{T}) $ with linear complexity. Third, we propose a series of collaborative models to determine the optimal layout of heterogeneous items at each user request. The joint modeling of user interests, cross-channel correlation, and page context in our models aligns more with the browsing nature of feed products than existing models. Finally, we conduct extensive experiments on both offline datasets and online A/B tests to verify the effectiveness of MIREC. The proposed framework has now been implemented on the homepage of Taobao to serve the main traffic.
Abstract:Feed recommendation systems, which recommend a sequence of items for users to browse and interact with, have gained significant popularity in practical applications. In feed products, users tend to browse a large number of items in succession, so the previously viewed items have a significant impact on users' behavior towards the following items. Therefore, traditional methods that mainly focus on improving the accuracy of recommended items are suboptimal for feed recommendations because they may recommend highly similar items. For feed recommendation, it is crucial to consider both the accuracy and diversity of the recommended item sequences in order to satisfy users' evolving interest when consecutively viewing items. To this end, this work proposes a general re-ranking framework named Multi-factor Sequential Re-ranking with Perception-Aware Diversification (MPAD) to jointly optimize accuracy and diversity for feed recommendation in a sequential manner. Specifically, MPAD first extracts users' different scales of interests from their behavior sequences through graph clustering-based aggregations. Then, MPAD proposes two sub-models to respectively evaluate the accuracy and diversity of a given item by capturing users' evolving interest due to the ever-changing context and users' personal perception of diversity from an item sequence perspective. This is consistent with the browsing nature of the feed scenario. Finally, MPAD generates the return list by sequentially selecting optimal items from the candidate set to maximize the joint benefits of accuracy and diversity of the entire list. MPAD has been implemented in Taobao's homepage feed to serve the main traffic and provide services to recommend billions of items to hundreds of millions of users every day.
Abstract:Online travel platforms (OTPs), e.g., Ctrip.com or Fliggy.com, can effectively provide travel-related products or services to users. In this paper, we focus on the multi-scenario click-through rate (CTR) prediction, i.e., training a unified model to serve all scenarios. Existing multi-scenario based CTR methods struggle in the context of OTP setting due to the ignorance of the cold-start users who have very limited data. To fill this gap, we propose a novel method named Cold-Start based Multi-scenario Network (CSMN). Specifically, it consists of two basic components including: 1) User Interest Projection Network (UIPN), which firstly purifies users' behaviors by eliminating the scenario-irrelevant information in behaviors with respect to the visiting scenario, followed by obtaining users' scenario-specific interests by summarizing the purified behaviors with respect to the target item via an attention mechanism; and 2) User Representation Memory Network (URMN), which benefits cold-start users from users with rich behaviors through a memory read and write mechanism. CSMN seamlessly integrates both components in an end-to-end learning framework. Extensive experiments on real-world offline dataset and online A/B test demonstrate the superiority of CSMN over state-of-the-art methods.
Abstract:Estimating Click-Through Rate (CTR) is a vital yet challenging task in personalized product search. However, existing CTR methods still struggle in the product search settings due to the following three challenges including how to more effectively extract users' short-term interests with respect to multiple aspects, how to extract and fuse users' long-term interest with short-term interests, how to address the entangling characteristic of long and short-term interests. To resolve these challenges, in this paper, we propose a new approach named Hierarchical Interests Fusing Network (HIFN), which consists of four basic modules namely Short-term Interests Extractor (SIE), Long-term Interests Extractor (LIE), Interests Fusion Module (IFM) and Interests Disentanglement Module (IDM). Specifically, SIE is proposed to extract user's short-term interests by integrating three fundamental interests encoders within it namely query-dependent, target-dependent and causal-dependent interest encoder, respectively, followed by delivering the resultant representation to the module LIE, where it can effectively capture user long-term interests by devising an attention mechanism with respect to the short-term interests from SIE module. In IFM, the achieved long and short-term interests are further fused in an adaptive manner, followed by concatenating it with original raw context features for the final prediction result. Last but not least, considering the entangling characteristic of long and short-term interests, IDM further devises a self-supervised framework to disentangle long and short-term interests. Extensive offline and online evaluations on a real-world e-commerce platform demonstrate the superiority of HIFN over state-of-the-art methods.
Abstract:The travel marketing platform of Alibaba serves an indispensable role for hundreds of different travel scenarios from Fliggy, Taobao, Alipay apps, etc. To provide personalized recommendation service for users visiting different scenarios, there are two critical issues to be carefully addressed. First, since the traffic characteristics of different scenarios, it is very challenging to train a unified model to serve all. Second, during the promotion period, the exposure of some specific items will be re-weighted due to manual intervention, resulting in biased logs, which will degrade the ranking model trained using these biased data. In this paper, we propose a novel Scenario-Aware Ranking Network (SAR-Net) to address these issues. SAR-Net harvests the abundant data from different scenarios by learning users' cross-scenario interests via two specific attention modules, which leverage the scenario features and item features to modulate the user behavior features, respectively. Then, taking the encoded features of previous module as input, a scenario-specific linear transformation layer is adopted to further extract scenario-specific features, followed by two groups of debias expert networks, i.e., scenario-specific experts and scenario-shared experts. They output intermediate results independently, which are further fused into the final result by a multi-scenario gating module. In addition, to mitigate the data fairness issue caused by manual intervention, we propose the concept of Fairness Coefficient (FC) to measures the importance of individual sample and use it to reweigh the prediction in the debias expert networks. Experiments on an offline dataset covering over 80 million users and 1.55 million travel items and an online A/B test demonstrate the effectiveness of our SAR-Net and its superiority over state-of-the-art methods.