Abstract:The six-degree-of-freedom (6-DOF) robotic arm has gained widespread application in human-coexisting environments. While previous research has predominantly focused on functional motion generation, the critical aspect of expressive motion in human-robot interaction remains largely unexplored. This paper presents a novel real-time motion generation planner that enhances interactivity by creating expressive robotic motions between arbitrary start and end states within predefined time constraints. Our approach involves three key contributions: first, we develop a mapping algorithm to construct an expressive motion dataset derived from human dance movements; second, we train motion generation models in both Cartesian and joint spaces using this dataset; third, we introduce an optimization algorithm that guarantees smooth, collision-free motion while maintaining the intended expressive style. Experimental results demonstrate the effectiveness of our method, which can generate expressive and generalized motions in under 0.5 seconds while satisfying all specified constraints.
Abstract:Style transfer involves transferring the style from a reference image to the content of a target image. Recent advancements in LoRA-based (Low-Rank Adaptation) methods have shown promise in effectively capturing the style of a single image. However, these approaches still face significant challenges such as content inconsistency, style misalignment, and content leakage. In this paper, we comprehensively analyze the limitations of the standard diffusion parameterization, which learns to predict noise, in the context of style transfer. To address these issues, we introduce ConsisLoRA, a LoRA-based method that enhances both content and style consistency by optimizing the LoRA weights to predict the original image rather than noise. We also propose a two-step training strategy that decouples the learning of content and style from the reference image. To effectively capture both the global structure and local details of the content image, we introduce a stepwise loss transition strategy. Additionally, we present an inference guidance method that enables continuous control over content and style strengths during inference. Through both qualitative and quantitative evaluations, our method demonstrates significant improvements in content and style consistency while effectively reducing content leakage.
Abstract:Chinese literary classics hold significant cultural and educational value, offering deep insights into morality, history, and human nature. These works often include classical Chinese and complex narratives, making them difficult for children to read. To bridge this gap, we introduce a child-friendly literary adaptation (CLA) task to adapt the Chinese literary classic into engaging and accessible text for children. However, recent large language models (LLMs) overlook children's reading preferences (\ie, vivid character portrayals, concise narrative structures, and appropriate readability), which poses challenges in CLA. In this paper, we propose a method called InstructChild, which augments the LLM with these preferences for adaptation. Specifically, we first obtain the characters' personalities and narrative structure as additional information for fine-grained instruction tuning. Then, we devise a readability metric as the reward to align the LLM with the children's reading level. Finally, a lookahead decoding strategy is applied to improve the readability of the generated text during inference. To support the evaluation of CLA task, we construct the Classic4Children dataset, which comprises both the original and child-friendly versions of the Four Great Classical Novels of Chinese literature. Experimental results show that our InstructChild significantly improves automatic and human evaluation performance.
Abstract:Large multimodal models (LMMs) have shown remarkable performance in the visual commonsense reasoning (VCR) task, which aims to answer a multiple-choice question based on visual commonsense within an image. However, the ability of LMMs to correct potential visual commonsense errors in the distractor upon their occurrence is yet under-explored. Drawing inspiration from how a human teacher crafts challenging distractors to test students' comprehension of the concepts or skills and assists them in identifying and correcting errors toward the answer, we are the pioneering research for LMMs to simulate this error correction process. To this end, we employ GPT-4 as a ``teacher'' to collect the explainable feedback dataset VCR-DF for error correction, which serves as a benchmark to evaluate the ability of LMMs to identify misconceptions and clarify reasons behind the error in VCR distractors toward final answers. In addition, we propose an LMM-based Pedagogical Expert Instructed Feedback Generation (PEIFG) model to incorporate the learnable expert prompts and multimodal instruction as guidance for feedback generation. Experimental results show that our PEIFG significantly outperforms existing LMMs. We believe that our benchmark provides a new direction for evaluating the capabilities of LMMs.
Abstract:Recent literature highlights the critical role of neighborhood construction in deriving model-agnostic explanations, with a growing trend toward deploying generative models to improve synthetic instance quality, especially for explaining text classifiers. These approaches overcome the challenges in neighborhood construction posed by the unstructured nature of texts, thereby improving the quality of explanations. However, the deployed generators are usually implemented via neural networks and lack inherent explainability, sparking arguments over the transparency of the explanation process itself. To address this limitation while preserving neighborhood quality, this paper introduces a probability-based editing method as an alternative to black-box text generators. This approach generates neighboring texts by implementing manipulations based on in-text contexts. Substituting the generator-based construction process with recursive probability-based editing, the resultant explanation method, XPROB (explainer with probability-based editing), exhibits competitive performance according to the evaluation conducted on two real-world datasets. Additionally, XPROB's fully transparent and more controllable construction process leads to superior stability compared to the generator-based explainers.
Abstract:Intelligent omni-surfaces (IOSs) with 360-degree electromagnetic radiation significantly improves the performance of wireless systems, while an adversarial IOS also poses a significant potential risk for physical layer security. In this paper, we propose a "DISCO" IOS (DIOS) based fully-passive jammer (FPJ) that can launch omnidirectional fully-passive jamming attacks. In the proposed DIOS-based FPJ, the interrelated refractive and reflective (R&R) coefficients of the adversarial IOS are randomly generated, acting like a "DISCO" that distributes wireless energy radiated by the base station. By introducing active channel aging (ACA) during channel coherence time, the DIOS-based FPJ can perform omnidirectional fully-passive jamming without neither jamming power nor channel knowledge of legitimate users (LUs). To characterize the impact of the DIOS-based PFJ, we derive the statistical characteristics of DIOS-jammed channels based on two widely-used IOS models, i.e., the constant-amplitude model and the variable-amplitude model. Consequently, the asymptotic analysis of the ergodic achievable sum rates under the DIOS-based omnidirectional fully-passive jamming is given based on the derived stochastic characteristics for both the two IOS models. Based on the derived analysis, the omnidirectional jamming impact of the proposed DIOS-based FPJ implemented by a constant-amplitude IOS does not depend on either the quantization number or the stochastic distribution of the DIOS coefficients, while the conclusion does not hold on when a variable-amplitude IOS is used. Numerical results based on one-bit quantization of the IOS phase shifts are provided to verify the effectiveness of the derived theoretical analysis. The proposed DIOS-based FPJ can not only launch omnidirectional fully-passive jamming, but also improve the jamming impact by about 55% at 10 dBm transmit power per LU.
Abstract:Joint Multimodal Entity-Relation Extraction (JMERE) is a challenging task that aims to extract entities and their relations from text-image pairs in social media posts. Existing methods for JMERE require large amounts of labeled data. However, gathering and annotating fine-grained multimodal data for JMERE poses significant challenges. Initially, we construct diverse and comprehensive multimodal few-shot datasets fitted to the original data distribution. To address the insufficient information in the few-shot setting, we introduce the \textbf{K}nowledge-\textbf{E}nhanced \textbf{C}ross-modal \textbf{P}rompt \textbf{M}odel (KECPM) for JMERE. This method can effectively address the problem of insufficient information in the few-shot setting by guiding a large language model to generate supplementary background knowledge. Our proposed method comprises two stages: (1) a knowledge ingestion stage that dynamically formulates prompts based on semantic similarity guide ChatGPT generating relevant knowledge and employs self-reflection to refine the knowledge; (2) a knowledge-enhanced language model stage that merges the auxiliary knowledge with the original input and utilizes a transformer-based model to align with JMERE's required output format. We extensively evaluate our approach on a few-shot dataset derived from the JMERE dataset, demonstrating its superiority over strong baselines in terms of both micro and macro F$_1$ scores. Additionally, we present qualitative analyses and case studies to elucidate the effectiveness of our model.
Abstract:Audio-driven talking head generation is a significant and challenging task applicable to various fields such as virtual avatars, film production, and online conferences. However, the existing GAN-based models emphasize generating well-synchronized lip shapes but overlook the visual quality of generated frames, while diffusion-based models prioritize generating high-quality frames but neglect lip shape matching, resulting in jittery mouth movements. To address the aforementioned problems, we introduce a two-stage diffusion-based model. The first stage involves generating synchronized facial landmarks based on the given speech. In the second stage, these generated landmarks serve as a condition in the denoising process, aiming to optimize mouth jitter issues and generate high-fidelity, well-synchronized, and temporally coherent talking head videos. Extensive experiments demonstrate that our model yields the best performance.
Abstract:Large language models (LLMs) have brought significant advancements to code generation and code repair, benefiting both novice and experienced developers. However, their training using unsanitized data from open-source repositories, like GitHub, raises the risk of inadvertently propagating security vulnerabilities. Despite numerous studies investigating the safety of code LLMs, there remains a gap in comprehensively addressing their security features. In this work, we aim to present a comprehensive study aimed at precisely evaluating and enhancing the security aspects of code LLMs. To support our research, we introduce CodeSecEval, a meticulously curated dataset designed to address 44 critical vulnerability types with 180 distinct samples. CodeSecEval serves as the foundation for the automatic evaluation of code models in two crucial tasks: code generation and code repair, with a strong emphasis on security. Our experimental results reveal that current models frequently overlook security issues during both code generation and repair processes, resulting in the creation of vulnerable code. In response, we propose different strategies that leverage vulnerability-aware information and insecure code explanations to mitigate these security vulnerabilities. Furthermore, our findings highlight that certain vulnerability types particularly challenge model performance, influencing their effectiveness in real-world applications. Based on these findings, we believe our study will have a positive impact on the software engineering community, inspiring the development of improved methods for training and utilizing LLMs, thereby leading to safer and more trustworthy model deployment.
Abstract:Large language models (LLMs) have brought significant advancements to code generation and code repair, benefiting both novice and experienced developers. However, their training using unsanitized data from open-source repositories, like GitHub, raises the risk of inadvertently propagating security vulnerabilities. Despite numerous studies investigating the safety of code LLMs, there remains a gap in comprehensively addressing their security features. In this work, we aim to present a comprehensive study aimed at precisely evaluating and enhancing the security aspects of code LLMs. To support our research, we introduce CodeSecEval, a meticulously curated dataset designed to address 44 critical vulnerability types with 180 distinct samples. CodeSecEval serves as the foundation for the automatic evaluation of code models in two crucial tasks: code generation and code repair, with a strong emphasis on security. Our experimental results reveal that current models frequently overlook security issues during both code generation and repair processes, resulting in the creation of vulnerable code. In response, we propose different strategies that leverage vulnerability-aware information and insecure code explanations to mitigate these security vulnerabilities. Furthermore, our findings highlight that certain vulnerability types particularly challenge model performance, influencing their effectiveness in real-world applications. Based on these findings, we believe our study will have a positive impact on the software engineering community, inspiring the development of improved methods for training and utilizing LLMs, thereby leading to safer and more trustworthy model deployment.