Abstract:Intelligent omni-surfaces (IOSs) with 360-degree electromagnetic radiation significantly improves the performance of wireless systems, while an adversarial IOS also poses a significant potential risk for physical layer security. In this paper, we propose a "DISCO" IOS (DIOS) based fully-passive jammer (FPJ) that can launch omnidirectional fully-passive jamming attacks. In the proposed DIOS-based FPJ, the interrelated refractive and reflective (R&R) coefficients of the adversarial IOS are randomly generated, acting like a "DISCO" that distributes wireless energy radiated by the base station. By introducing active channel aging (ACA) during channel coherence time, the DIOS-based FPJ can perform omnidirectional fully-passive jamming without neither jamming power nor channel knowledge of legitimate users (LUs). To characterize the impact of the DIOS-based PFJ, we derive the statistical characteristics of DIOS-jammed channels based on two widely-used IOS models, i.e., the constant-amplitude model and the variable-amplitude model. Consequently, the asymptotic analysis of the ergodic achievable sum rates under the DIOS-based omnidirectional fully-passive jamming is given based on the derived stochastic characteristics for both the two IOS models. Based on the derived analysis, the omnidirectional jamming impact of the proposed DIOS-based FPJ implemented by a constant-amplitude IOS does not depend on either the quantization number or the stochastic distribution of the DIOS coefficients, while the conclusion does not hold on when a variable-amplitude IOS is used. Numerical results based on one-bit quantization of the IOS phase shifts are provided to verify the effectiveness of the derived theoretical analysis. The proposed DIOS-based FPJ can not only launch omnidirectional fully-passive jamming, but also improve the jamming impact by about 55% at 10 dBm transmit power per LU.
Abstract:Dual-polarized (DP) multiple-input-multiple-output (MIMO) systems have been widely adopted in commercial mobile wireless communications. Such systems achieve multiplexing and diversity gain by exploiting the polarization dimension. However, existing studies have shown that the capacity of DP MIMO may not surpass that of single-polarized (SP) MIMO systems due to the cross-polarization coupling induced by the propagation environment. In this letter, we employ reconfigurable intelligent surfaces (RISs) to address this issue and investigate how large the surface should be to ensure a better performance for DP MIMO. Specifically, we first derive the capacities of DP and SP MIMO systems with an RIS, and then study the influence of the RIS size on the system capacity. Our analyses reveal how to deploy the RIS in a DP MIMO scenario.
Abstract:Integrated sensing and communication (ISAC) systems traditionally presuppose that sensing and communication (S&C) channels remain approximately constant during their coherence time. However, a "DISCO" reconfigurable intelligent surface (DRIS), i.e., an illegitimate RIS with random, time-varying reflection properties that acts like a "disco ball," introduces a paradigm shift that enables active channel aging more rapidly during the channel coherence time. In this letter, we investigate the impact of DISCO jamming attacks launched by a DRISbased fully-passive jammer (FPJ) on an ISAC system. Specifically, an ISAC problem formulation and a corresponding waveform optimization are presented in which the ISAC waveform design considers the trade-off between the S&C performance and is formulated as a Pareto optimization problem. Moreover, a theoretical analysis is conducted to quantify the impact of DISCO jamming attacks. Numerical results are presented to evaluate the S&C performance under DISCO jamming attacks and to validate the derived theoretical analysis.
Abstract:Background: Diffuse large B-cell lymphoma (DLBCL) segmentation is a challenge in medical image analysis. Traditional segmentation methods for lymphoma struggle with the complex patterns and the presence of DLBCL lesions. Objective: We aim to develop an accurate method for lymphoma segmentation with 18F-Fluorodeoxyglucose positron emission tomography (PET) and computed tomography (CT) images. Methods: Our lymphoma segmentation approach combines a vision transformer with dual encoders, adeptly fusing PET and CT data via multimodal cross-attention fusion (MMCAF) module. In this study, PET and CT data from 165 DLBCL patients were analyzed. A 5-fold cross-validation was employed to evaluate the performance and generalization ability of our method. Ground truths were annotated by experienced nuclear medicine experts. We calculated the total metabolic tumor volume (TMTV) and performed a statistical analysis on our results. Results: The proposed method exhibited accurate performance in DLBCL lesion segmentation, achieving a Dice similarity coefficient of 0.9173$\pm$0.0071, a Hausdorff distance of 2.71$\pm$0.25mm, a sensitivity of 0.9462$\pm$0.0223, and a specificity of 0.9986$\pm$0.0008. Additionally, a Pearson correlation coefficient of 0.9030$\pm$0.0179 and an R-square of 0.8586$\pm$0.0173 were observed in TMTV when measured on manual annotation compared to our segmentation results. Conclusion: This study highlights the advantages of MMCAF and vision transformer for lymphoma segmentation using PET and CT, offering great promise for computer-aided lymphoma diagnosis and treatment.
Abstract:Illegitimate intelligent reflective surfaces (IRSs) can pose significant physical layer security risks on multi-user multiple-input single-output (MU-MISO) systems. Recently, a DISCO approach has been proposed an illegitimate IRS with random and time-varying reflection coefficients, referred to as a "disco" IRS (DIRS). Such DIRS can attack MU-MISO systems without relying on either jamming power or channel state information (CSI), and classical anti-jamming techniques are ineffective for the DIRS-based fully-passive jammers (DIRS-based FPJs). In this paper, we propose an IRS-enhanced anti-jamming precoder against DIRS-based FPJs that requires only statistical rather than instantaneous CSI of the DIRS-jammed channels. Specifically, a legitimate IRS is introduced to reduce the strength of the DIRS-based jamming relative to the transmit signals at a legitimate user (LU). In addition, the active beamforming at the legitimate access point (AP) is designed to maximize the signal-to-jamming-plus-noise ratios (SJNRs). Numerical results are presented to evaluate the effectiveness of the proposed IRS-enhanced anti-jamming precoder against DIRS-based FPJs.
Abstract:Emerging intelligent reflective surfaces (IRSs) significantly improve system performance, but also pose a signifcant risk for physical layer security (PLS). Unlike the extensive research on legitimate IRS-enhanced communications, in this article we present an adversarial IRS-based fully-passive jammer (FPJ). We describe typical application scenarios for Disco IRS (DIRS)-based FPJ, where an illegitimate IRS with random, time-varying reflection properties acts like a "disco ball" to randomly change the propagation environment. We introduce the principles of DIRS-based FPJ and overview existing investigations of the technology, including a design example employing one-bit phase shifters. The DIRS-based FPJ can be implemented without either jamming power or channel state information (CSI) for the legitimate users (LUs). It does not suffer from the energy constraints of traditional active jammers, nor does it require any knowledge of the LU channels. In addition to the proposed jamming attack, we also propose an anti-jamming strategy that requires only statistical rather than instantaneous CSI. Furthermore, we present a data frame structure that enables the legitimate access point (AP) to estimate the statistical CSI in the presence of the DIRS jamming. Typical cases are discussed to show the impact of the DIRS-based FPJ and the feasibility of the anti-jamming precoder. Moreover, we outline future research directions and challenges for the DIRS-based FPJ and its anti-jamming precoding to stimulate this line of research and pave the way for practical applications.
Abstract:Emerging intelligent reflecting surfaces (IRSs) significantly improve system performance, but also pose a huge risk for physical layer security. Existing works have illustrated that a disco IRS (DIRS), i.e., an illegitimate IRS with random time-varying reflection properties (like a "disco ball"), can be employed by an attacker to actively age the channels of legitimate users (LUs). Such active channel aging (ACA) generated by the DIRS can be employed to jam multi-user multiple-input single-output (MU-MISO) systems without relying on either jamming power or LU channel state information (CSI). To address the significant threats posed by DIRS-based fully-passive jammers (FPJs), an anti-jamming precoder is proposed that requires only the statistical characteristics of the DIRS-based ACA channels instead of their CSI. The statistical characteristics of DIRS-jammed channels are first derived, and then the anti-jamming precoder is derived based on the statistical characteristics. Furthermore, we prove that the anti-jamming precoder can achieve the maximum signal-to-jamming-plus-noise ratio (SJNR). To acquire the ACA statistics without changing the system architecture or cooperating with the illegitimate DIRS, we design a data frame structure that the legitimate access point (AP) can use to estimate the statistical characteristics. During the designed data frame, the LUs only need to feed back their received power to the legitimate AP when they detect jamming attacks. Numerical results are also presented to evaluate the effectiveness of the proposed anti-jamming precoder against the DIRS-based FPJs and the feasibility of the designed data frame used by the legitimate AP to estimate the statistical characteristics.
Abstract:Emerging intelligent reflecting surfaces (IRSs) significantly improve system performance, while also pose a huge risk for physical layer security. A disco IRS (DIRS), i.e., an illegitimate IRS with random time-varying reflection properties, can be employed by an attacker to actively age the channels of legitimate users (LUs). Such active channel aging (ACA) generated by the DIRS-based fully-passive jammer (FPJ) can be applied to jam multi-user multiple-input single-output (MU-MISO) systems without relying on either jamming power or LU channel state information (CSI). To address the significant threats posed by the DIRS-based FPJ, an anti-jamming strategy is proposed that requires only the statistical characteristics of DIRS-jammed channels instead of their CSI. Statistical characteristics of DIRS-jammed channels are first derived, and then the anti-jamming precoder is given based on the derived statistical characteristics. Numerical results are also presented to evaluate the effectiveness of the proposed anti-jamming precoder against the DIRS-based FPJ.
Abstract:The available evidence suggests that dynamic functional connectivity (dFC) can capture time-varying abnormalities in brain activity in resting-state cerebral functional magnetic resonance imaging (rs-fMRI) data and has a natural advantage in uncovering mechanisms of abnormal brain activity in schizophrenia(SZ) patients. Hence, an advanced dynamic brain network analysis model called the temporal brain category graph convolutional network (Temporal-BCGCN) was employed. Firstly, a unique dynamic brain network analysis module, DSF-BrainNet, was designed to construct dynamic synchronization features. Subsequently, a revolutionary graph convolution method, TemporalConv, was proposed, based on the synchronous temporal properties of feature. Finally, the first modular abnormal hemispherical lateralization test tool in deep learning based on rs-fMRI data, named CategoryPool, was proposed. This study was validated on COBRE and UCLA datasets and achieved 83.62% and 89.71% average accuracies, respectively, outperforming the baseline model and other state-of-the-art methods. The ablation results also demonstrate the advantages of TemporalConv over the traditional edge feature graph convolution approach and the improvement of CategoryPool over the classical graph pooling approach. Interestingly, this study showed that the lower order perceptual system and higher order network regions in the left hemisphere are more severely dysfunctional than in the right hemisphere in SZ and reaffirms the importance of the left medial superior frontal gyrus in SZ. Our core code is available at: https://github.com/swfen/Temporal-BCGCN.
Abstract:Due to the open communications environment in wireless channels, wireless networks are vulnerable to jamming attacks. However, existing approaches for jamming rely on knowledge of the legitimate users' (LUs') channels, extra jamming power, or both. To raise concerns about the potential threats posed by illegitimate intelligent reflecting surfaces (IRSs), we propose an alternative method to launch jamming attacks on LUs without either LU channel state information (CSI) or jamming power. The proposed approach employs an adversarial IRS with random phase shifts, referred to as a "disco" IRS (DIRS), that acts like a "disco ball" to actively age the LUs' channels. Such active channel aging (ACA) interference can be used to launch jamming attacks on multi-user multiple-input single-output (MU-MISO) systems. The proposed DIRS-based fully-passive jammer (FPJ) can jam LUs with no additional jamming power or knowledge of the LU CSI, and it can not be mitigated by classical anti-jamming approaches. A theoretical analysis of the proposed DIRS-based FPJ that provides an evaluation of the DIRS-based jamming attacks is derived. Based on this detailed theoretical analysis, some unique properties of the proposed DIRS-based FPJ can be obtained. Furthermore, a design example of the proposed DIRS-based FPJ based on one-bit quantization of the IRS phases is demonstrated to be sufficient for implementing the jamming attack. In addition, numerical results are provided to show the effectiveness of the derived theoretical analysis and the jamming impact of the proposed DIRS-based FPJ.