Abstract:Super-Resolution Ultrasound (SRUS) imaging through localising and tracking microbubbles, also known as Ultrasound Localisation Microscopy (ULM), has demonstrated significant potential for reconstructing microvasculature and flows with sub-diffraction resolution in clinical diagnostics. However, imaging organs with large tissue movements, such as those caused by respiration, presents substantial challenges. Existing methods often require breath holding to maintain accumulation accuracy, which limits data acquisition time and ULM image saturation. To improve image quality in the presence of large tissue movements, this study introduces an approach integrating high-frame-rate ultrasound with online precise robotic probe control. Tested on a microvasculature phantom with translation motions up to 20 mm, twice the aperture size of the matrix array used, our method achieved real-time tracking of the moving phantom and imaging volume rate at 85 Hz, keeping majority of the target volume in the imaging field of view. ULM images of the moving cross channels in the phantom were successfully reconstructed in post-processing, demonstrating the feasibility of super-resolution imaging under large tissue motions. This represents a significant step towards ULM imaging of organs with large motion.
Abstract:Schizophrenia is a serious psychiatric disorder. Its pathogenesis is not completely clear, making it difficult to treat patients precisely. Because of the complicated non-Euclidean network structure of the human brain, learning critical information from brain networks remains difficult. To effectively capture the topological information of brain neural networks, a novel multimodal graph attention network based on sparse interaction mechanism (Multi-SIGATnet) was proposed for SZ classification was proposed for SZ classification. Firstly, structural and functional information were fused into multimodal data to obtain more comprehensive and abundant features for patients with SZ. Subsequently, a sparse interaction mechanism was proposed to effectively extract salient features and enhance the feature representation capability. By enhancing the strong connections and weakening the weak connections between feature information based on an asymmetric convolutional network, high-order interactive features were captured. Moreover, sparse learning strategies were designed to filter out redundant connections to improve model performance. Finally, local and global features were updated in accordance with the topological features and connection weight constraints of the higher-order brain network, the features being projected to the classification target space for disorder classification. The effectiveness of the model is verified on the Center for Biomedical Research Excellence (COBRE) and University of California Los Angeles (UCLA) datasets, achieving 81.9\% and 75.8\% average accuracy, respectively, 4.6\% and 5.5\% higher than the graph attention network (GAT) method. Experiments showed that the Multi-SIGATnet method exhibited good performance in identifying SZ.
Abstract:Recently, the incorporation of both temporal features and the correlation across time series has become an effective approach in time series prediction. Spatio-Temporal Graph Neural Networks (STGNNs) demonstrate good performance on many Temporal-correlation Forecasting Problem. However, when applied to tasks lacking periodicity, such as stock data prediction, the effectiveness and robustness of STGNNs are found to be unsatisfactory. And STGNNs are limited by memory savings so that cannot handle problems with a large number of nodes. In this paper, we propose a novel approach called the Temporal-Correlation Graph Pre-trained Network (TCGPN) to address these limitations. TCGPN utilize Temporal-correlation fusion encoder to get a mixed representation and pre-training method with carefully designed temporal and correlation pre-training tasks. Entire structure is independent of the number and order of nodes, so better results can be obtained through various data enhancements. And memory consumption during training can be significantly reduced through multiple sampling. Experiments are conducted on real stock market data sets CSI300 and CSI500 that exhibit minimal periodicity. We fine-tune a simple MLP in downstream tasks and achieve state-of-the-art results, validating the capability to capture more robust temporal correlation patterns.
Abstract:Parameter-efficient tuning methods such as LoRA could achieve comparable performance to model tuning by tuning a small portion of the parameters. However, substantial computational resources are still required, as this process involves calculating gradients and performing back-propagation throughout the model. Much effort has recently been devoted to utilizing the derivative-free optimization method to eschew the computation of gradients and showcase an augmented level of robustness in few-shot settings. In this paper, we prepend the low-rank modules into each self-attention layer of the model and employ two derivative-free optimization methods to optimize these low-rank modules at each layer alternately. Extensive results on various tasks and language models demonstrate that our proposed method achieves substantial improvement and exhibits clear advantages in memory usage and convergence speed compared to existing gradient-based parameter-efficient tuning and derivative-free optimization methods in few-shot settings.
Abstract:Large Language Models (LLMs) have demonstrated remarkable performance across diverse tasks and exhibited impressive reasoning abilities by applying zero-shot Chain-of-Thought (CoT) prompting. However, due to the evolving nature of sentence prefixes during the pre-training phase, existing zero-shot CoT prompting methods that employ identical CoT prompting across all task instances may not be optimal. In this paper, we introduce a novel zero-shot prompting method that leverages evolutionary algorithms to generate diverse promptings for LLMs dynamically. Our approach involves initializing two CoT promptings, performing evolutionary operations based on LLMs to create a varied set, and utilizing the LLMs to select a suitable CoT prompting for a given problem. Additionally, a rewriting operation, guided by the selected CoT prompting, enhances the understanding of the LLMs about the problem. Extensive experiments conducted across ten reasoning datasets demonstrate the superior performance of our proposed method compared to current zero-shot CoT prompting methods on GPT-3.5-turbo and GPT-4. Moreover, in-depth analytical experiments underscore the adaptability and effectiveness of our method in various reasoning tasks.
Abstract:A transhumeral prosthesis restores missing anatomical segments below the shoulder, including the hand. Active prostheses utilize real-valued, continuous sensor data to recognize patient target poses, or goals, and proactively move the artificial limb. Previous studies have examined how well the data collected in stationary poses, without considering the time steps, can help discriminate the goals. In this case study paper, we focus on using time series data from surface electromyography electrodes and kinematic sensors to sequentially recognize patients' goals. Our approach involves transforming the data into discrete events and training an existing process mining-based goal recognition system. Results from data collected in a virtual reality setting with ten subjects demonstrate the effectiveness of our proposed goal recognition approach, which achieves significantly better precision and recall than the state-of-the-art machine learning techniques and is less confident when wrong, which is beneficial when approximating smoother movements of prostheses.
Abstract:Graph Convolutional Networks (GCNs) can capture non-Euclidean spatial dependence between different brain regions, and the graph pooling operator in GCNs is key to enhancing the representation learning capability and acquiring abnormal brain maps. However, the majority of existing research designs graph pooling operators only from the perspective of nodes while disregarding the original edge features, in a way that not only confines graph pooling application scenarios, but also diminishes its ability to capture critical substructures. In this study, a clustering graph pooling method that first supports multidimensional edge features, called Edge-aware hard clustering graph pooling (EHCPool), is developed. EHCPool proposes the first 'Edge-to-node' score evaluation criterion based on edge features to assess node feature significance. To more effectively capture the critical subgraphs, a novel Iteration n-top strategy is further designed to adaptively learn sparse hard clustering assignments for graphs. Subsequently, an innovative N-E Aggregation strategy is presented to aggregate node and edge feature information in each independent subgraph. The proposed model was evaluated on multi-site brain imaging public datasets and yielded state-of-the-art performance. We believe this method is the first deep learning tool with the potential to probe different types of abnormal functional brain networks from data-driven perspective. Core code is at: https://github.com/swfen/EHCPool.
Abstract:The available evidence suggests that dynamic functional connectivity (dFC) can capture time-varying abnormalities in brain activity in resting-state cerebral functional magnetic resonance imaging (rs-fMRI) data and has a natural advantage in uncovering mechanisms of abnormal brain activity in schizophrenia(SZ) patients. Hence, an advanced dynamic brain network analysis model called the temporal brain category graph convolutional network (Temporal-BCGCN) was employed. Firstly, a unique dynamic brain network analysis module, DSF-BrainNet, was designed to construct dynamic synchronization features. Subsequently, a revolutionary graph convolution method, TemporalConv, was proposed, based on the synchronous temporal properties of feature. Finally, the first modular abnormal hemispherical lateralization test tool in deep learning based on rs-fMRI data, named CategoryPool, was proposed. This study was validated on COBRE and UCLA datasets and achieved 83.62% and 89.71% average accuracies, respectively, outperforming the baseline model and other state-of-the-art methods. The ablation results also demonstrate the advantages of TemporalConv over the traditional edge feature graph convolution approach and the improvement of CategoryPool over the classical graph pooling approach. Interestingly, this study showed that the lower order perceptual system and higher order network regions in the left hemisphere are more severely dysfunctional than in the right hemisphere in SZ and reaffirms the importance of the left medial superior frontal gyrus in SZ. Our core code is available at: https://github.com/swfen/Temporal-BCGCN.
Abstract:An optimization method is proposed in this paper for novel deployment of given number of directional landmarks (location and pose) within a given region in the 3-D task space. This new deployment technique is built on the geometric models of both landmarks and the monocular camera. In particular, a new concept of Multiple Coverage Probability (MCP) is defined to characterize the probability of at least n landmarks being covered simultaneously by a camera at a fixed position. The optimization is conducted with respect to the position and pose of the given number of landmarks to maximize MCP through globally exploration of the given 3-D space. By adopting the elimination genetic algorithm, the global optimal solutions can be obtained, which are then applied to improve the convergent performance of the visual observer on SE(3) as a demonstration example. Both simulation and experimental results are presented to validate the effectiveness of the proposed landmark deployment optimization method.
Abstract:Muscle fatigue is usually defined as a decrease in the ability to produce force. The surface electromyography (sEMG) signals have been widely used to provide information about muscle activities including detecting muscle fatigue by various data-driven techniques such as machine learning and statistical approaches. However, it is well-known that sEMG signals are weak signals (low amplitude of the signals) with a low signal-to-noise ratio, data-driven techniques cannot work well when the quality of the data is poor. In particular, the existing methods are unable to detect muscle fatigue coming from static poses. This work exploits the concept of weak monotonicity, which has been observed in the process of fatigue, to robustly detect muscle fatigue in the presence of measurement noises and human variations. Such a population trend methodology has shown its potential in muscle fatigue detection as demonstrated by the experiment of a static pose.