Abstract:3D pre-training is crucial to 3D perception tasks. However, limited by the difficulties in collecting clean 3D data, 3D pre-training consistently faced data scaling challenges. Inspired by semi-supervised learning leveraging limited labeled data and a large amount of unlabeled data, in this work, we propose a novel self-supervised pre-training framework utilizing the real 3D data and the pseudo-3D data lifted from images by a large depth estimation model. Another challenge lies in the efficiency. Previous methods such as Point-BERT and Point-MAE, employ k nearest neighbors to embed 3D tokens, requiring quadratic time complexity. To efficiently pre-train on such a large amount of data, we propose a linear-time-complexity token embedding strategy and a training-efficient 2D reconstruction target. Our method achieves state-of-the-art performance in 3D classification and few-shot learning while maintaining high pre-training and downstream fine-tuning efficiency.
Abstract:Instance-incremental learning (IIL) focuses on learning continually with data of the same classes. Compared to class-incremental learning (CIL), the IIL is seldom explored because IIL suffers less from catastrophic forgetting (CF). However, besides retaining knowledge, in real-world deployment scenarios where the class space is always predefined, continual and cost-effective model promotion with the potential unavailability of previous data is a more essential demand. Therefore, we first define a new and more practical IIL setting as promoting the model's performance besides resisting CF with only new observations. Two issues have to be tackled in the new IIL setting: 1) the notorious catastrophic forgetting because of no access to old data, and 2) broadening the existing decision boundary to new observations because of concept drift. To tackle these problems, our key insight is to moderately broaden the decision boundary to fail cases while retain old boundary. Hence, we propose a novel decision boundary-aware distillation method with consolidating knowledge to teacher to ease the student learning new knowledge. We also establish the benchmarks on existing datasets Cifar-100 and ImageNet. Notably, extensive experiments demonstrate that the teacher model can be a better incremental learner than the student model, which overturns previous knowledge distillation-based methods treating student as the main role.
Abstract:Change detection is widely applied in remote sensing image analysis. Existing methods require training models separately for each dataset, which leads to poor domain generalization. Moreover, these methods rely heavily on large amounts of high-quality pair-labelled data for training, which is expensive and impractical. In this paper, we propose a multimodal contrastive learning (ChangeCLIP) based on visual-language pre-training for change detection domain generalization. Additionally, we propose a dynamic context optimization for prompt learning. Meanwhile, to address the data dependency issue of existing methods, we introduce a single-temporal and controllable AI-generated training strategy (SAIN). This allows us to train the model using a large number of single-temporal images without image pairs in the real world, achieving excellent generalization. Extensive experiments on series of real change detection datasets validate the superiority and strong generalization of ChangeCLIP, outperforming state-of-the-art change detection methods. Code will be available.
Abstract:Although mainstream unsupervised anomaly detection (AD) algorithms perform well in academic datasets, their performance is limited in practical application due to the ideal experimental setting of clean training data. Training with noisy data is an inevitable problem in real-world anomaly detection but is seldom discussed. This paper considers label-level noise in image sensory anomaly detection for the first time. To solve this problem, we proposed a memory-based unsupervised AD method, SoftPatch, which efficiently denoises the data at the patch level. Noise discriminators are utilized to generate outlier scores for patch-level noise elimination before coreset construction. The scores are then stored in the memory bank to soften the anomaly detection boundary. Compared with existing methods, SoftPatch maintains a strong modeling ability of normal data and alleviates the overconfidence problem in coreset. Comprehensive experiments in various noise scenes demonstrate that SoftPatch outperforms the state-of-the-art AD methods on the MVTecAD and BTAD benchmarks and is comparable to those methods under the setting without noise.
Abstract:In the context of high usability in single-class anomaly detection models, recent academic research has become concerned about the more complex multi-class anomaly detection. Although several papers have designed unified models for this task, they often overlook the utility of class labels, a potent tool for mitigating inter-class interference. To address this issue, we introduce a Multi-class Implicit Neural representation Transformer for unified Anomaly Detection (MINT-AD), which leverages the fine-grained category information in the training stage. By learning the multi-class distributions, the model generates class-aware query embeddings for the transformer decoder, mitigating inter-class interference within the reconstruction model. Utilizing such an implicit neural representation network, MINT-AD can project category and position information into a feature embedding space, further supervised by classification and prior probability loss functions. Experimental results on multiple datasets demonstrate that MINT-AD outperforms existing unified training models.
Abstract:Despite significant advancements in image customization with diffusion models, current methods still have several limitations: 1) unintended changes in non-target areas when regenerating the entire image; 2) guidance solely by a reference image or text descriptions; and 3) time-consuming fine-tuning, which limits their practical application. In response, we introduce a tuning-free framework for simultaneous text-image-guided image customization, enabling precise editing of specific image regions within seconds. Our approach preserves the semantic features of the reference image subject while allowing modification of detailed attributes based on text descriptions. To achieve this, we propose an innovative attention blending strategy that blends self-attention features in the UNet decoder during the denoising process. To our knowledge, this is the first tuning-free method that concurrently utilizes text and image guidance for image customization in specific regions. Our approach outperforms previous methods in both human and quantitative evaluations, providing an efficient solution for various practical applications, such as image synthesis, design, and creative photography.
Abstract:Deep learning-based image matching methods play a crucial role in computer vision, yet they often suffer from substantial computational demands. To tackle this challenge, we present HCPM, an efficient and detector-free local feature-matching method that employs hierarchical pruning to optimize the matching pipeline. In contrast to recent detector-free methods that depend on an exhaustive set of coarse-level candidates for matching, HCPM selectively concentrates on a concise subset of informative candidates, resulting in fewer computational candidates and enhanced matching efficiency. The method comprises a self-pruning stage for selecting reliable candidates and an interactive-pruning stage that identifies correlated patches at the coarse level. Our results reveal that HCPM significantly surpasses existing methods in terms of speed while maintaining high accuracy. The source code will be made available upon publication.
Abstract:Recent success of vision foundation models have shown promising performance for the 2D perception tasks. However, it is difficult to train a 3D foundation network directly due to the limited dataset and it remains under explored whether existing foundation models can be lifted to 3D space seamlessly. In this paper, we present PointSeg, a novel training-free paradigm that leverages off-the-shelf vision foundation models to address 3D scene perception tasks. PointSeg can segment anything in 3D scene by acquiring accurate 3D prompts to align their corresponding pixels across frames. Concretely, we design a two-branch prompts learning structure to construct the 3D point-box prompts pairs, combining with the bidirectional matching strategy for accurate point and proposal prompts generation. Then, we perform the iterative post-refinement adaptively when cooperated with different vision foundation models. Moreover, we design a affinity-aware merging algorithm to improve the final ensemble masks. PointSeg demonstrates impressive segmentation performance across various datasets, all without training. Specifically, our approach significantly surpasses the state-of-the-art specialist model by 13.4$\%$, 11.3$\%$, and 12$\%$ mAP on ScanNet, ScanNet++, and KITTI-360 datasets, respectively. On top of that, PointSeg can incorporate with various segmentation models and even surpasses the supervised methods.
Abstract:Deep learning models, particularly those based on transformers, often employ numerous stacked structures, which possess identical architectures and perform similar functions. While effective, this stacking paradigm leads to a substantial increase in the number of parameters, posing challenges for practical applications. In today's landscape of increasingly large models, stacking depth can even reach dozens, further exacerbating this issue. To mitigate this problem, we introduce LORS (LOw-rank Residual Structure). LORS allows stacked modules to share the majority of parameters, requiring a much smaller number of unique ones per module to match or even surpass the performance of using entirely distinct ones, thereby significantly reducing parameter usage. We validate our method by applying it to the stacked decoders of a query-based object detector, and conduct extensive experiments on the widely used MS COCO dataset. Experimental results demonstrate the effectiveness of our method, as even with a 70\% reduction in the parameters of the decoder, our method still enables the model to achieve comparable or
Abstract:Unsupervised Anomaly Detection (UAD) with incremental training is crucial in industrial manufacturing, as unpredictable defects make obtaining sufficient labeled data infeasible. However, continual learning methods primarily rely on supervised annotations, while the application in UAD is limited due to the absence of supervision. Current UAD methods train separate models for different classes sequentially, leading to catastrophic forgetting and a heavy computational burden. To address this issue, we introduce a novel Unsupervised Continual Anomaly Detection framework called UCAD, which equips the UAD with continual learning capability through contrastively-learned prompts. In the proposed UCAD, we design a Continual Prompting Module (CPM) by utilizing a concise key-prompt-knowledge memory bank to guide task-invariant `anomaly' model predictions using task-specific `normal' knowledge. Moreover, Structure-based Contrastive Learning (SCL) is designed with the Segment Anything Model (SAM) to improve prompt learning and anomaly segmentation results. Specifically, by treating SAM's masks as structure, we draw features within the same mask closer and push others apart for general feature representations. We conduct comprehensive experiments and set the benchmark on unsupervised continual anomaly detection and segmentation, demonstrating that our method is significantly better than anomaly detection methods, even with rehearsal training. The code will be available at https://github.com/shirowalker/UCAD.