Abstract:Causal models seek to unravel the cause-effect relationships among variables from observed data, as opposed to mere mappings among them, as traditional regression models do. This paper introduces a novel causal discovery algorithm designed for settings in which variables exhibit linearly sparse relationships. In such scenarios, the causal links represented by directed acyclic graphs (DAGs) can be encapsulated in a structural matrix. The proposed approach leverages the structural matrix's ability to reconstruct data and the statistical properties it imposes on the data to identify the correct structural matrix. This method does not rely on independence tests or graph fitting procedures, making it suitable for scenarios with limited training data. Simulation results demonstrate that the proposed method outperforms the well-known PC, GES, BIC exact search, and LINGAM-based methods in recovering linearly sparse causal structures.
Abstract:In this paper, a novel generative adversarial imitation learning (GAIL)-powered policy learning approach is proposed for optimizing beamforming, spectrum allocation, and remote user equipment (RUE) association in NTNs. Traditional reinforcement learning (RL) methods for wireless network optimization often rely on manually designed reward functions, which can require extensive parameter tuning. To overcome these limitations, we employ inverse RL (IRL), specifically leveraging the GAIL framework, to automatically learn reward functions without manual design. We augment this framework with an asynchronous federated learning approach, enabling decentralized multi-satellite systems to collaboratively derive optimal policies. The proposed method aims to maximize spectrum efficiency (SE) while meeting minimum information rate requirements for RUEs. To address the non-convex, NP-hard nature of this problem, we combine the many-to-one matching theory with a multi-agent asynchronous federated IRL (MA-AFIRL) framework. This allows agents to learn through asynchronous environmental interactions, improving training efficiency and scalability. The expert policy is generated using the Whale optimization algorithm (WOA), providing data to train the automatic reward function within GAIL. Simulation results show that the proposed MA-AFIRL method outperforms traditional RL approaches, achieving a $14.6\%$ improvement in convergence and reward value. The novel GAIL-driven policy learning establishes a novel benchmark for 6G NTN optimization.
Abstract:Semantic communications (SC) is an emerging communication paradigm in which wireless devices can send only relevant information from a source of data while relying on computing resources to regenerate missing data points. However, the design of a multi-user SC system becomes more challenging because of the computing and communication overhead required for coordination. Existing solutions for learning the semantic language and performing resource allocation often fail to capture the computing and communication tradeoffs involved in multiuser SC. To address this gap, a novel framework for decentralized computing and communication resource allocation in multiuser SC systems is proposed. The challenge of efficiently allocating communication and computing resources (for reasoning) in a decentralized manner to maximize the quality of task experience for the end users is addressed through the application of Stackelberg hyper game theory. Leveraging the concept of second-level hyper games, novel analytical formulations are developed to model misperceptions of the users about each other's communication and control strategies. Further, equilibrium analysis of the learned resource allocation protocols examines the convergence of the computing and communication strategies to a local Stackelberg equilibria, considering misperceptions. Simulation results show that the proposed Stackelberg hyper game results in efficient usage of communication and computing resources while maintaining a high quality of experience for the users compared to state-of-the-art that does not account for the misperceptions.
Abstract:The Internet of Sounds (IoS) combines sound sensing, processing, and transmission techniques, enabling collaboration among diverse sound devices. To achieve perceptual quality of sound synchronization in the IoS, it is necessary to precisely synchronize three critical factors: sound quality, timing, and behavior control. However, conventional bit-oriented communication, which focuses on bit reproduction, may not be able to fulfill these synchronization requirements under dynamic channel conditions. One promising approach to address the synchronization challenges of the IoS is through the use of semantic communication (SC) that can capture and leverage the logical relationships in its source data. Consequently, in this paper, we propose an IoS-centric SC framework with a transceiver design. The designed encoder extracts semantic information from diverse sources and transmits it to IoS listeners. It can also distill important semantic information to reduce transmission latency for timing synchronization. At the receiver's end, the decoder employs context- and knowledge-based reasoning techniques to reconstruct and integrate sounds, which achieves sound quality synchronization across diverse communication environments. Moreover, by periodically sharing knowledge, SC models of IoS devices can be updated to optimize their synchronization behavior. Finally, we explore several open issues on mathematical models, resource allocation, and cross-layer protocols.
Abstract:Split federated learning (SFL) is a compute-efficient paradigm in distributed machine learning (ML), where components of large ML models are outsourced to remote servers. A significant challenge in SFL, particularly when deployed over wireless channels, is the susceptibility of transmitted model parameters to adversarial jamming that could jeopardize the learning process. This is particularly pronounced for word embedding parameters in large language models (LLMs), which are crucial for language understanding. In this paper, rigorous insights are provided into the influence of jamming LLM word embeddings in SFL by deriving an expression for the ML training loss divergence and showing that it is upper-bounded by the mean squared error (MSE). Based on this analysis, a physical layer framework is developed for resilient SFL with LLMs (R-SFLLM) over wireless networks. R-SFLLM leverages wireless sensing data to gather information on the jamming directions-of-arrival (DoAs) for the purpose of devising a novel, sensing-assisted anti-jamming strategy while jointly optimizing beamforming, user scheduling, and resource allocation. Extensive experiments using BERT and RoBERTa models demonstrate R-SFLLM's effectiveness, achieving close-to-baseline performance across various natural language processing (NLP) tasks and datasets. The proposed methodology further introduces an adversarial training component, where controlled noise exposure significantly enhances the LLM's resilience to perturbed parameters during training. The results show that more noise-sensitive models, such as RoBERTa, benefit from this feature, especially when resource allocation is unfair. It is also shown that worst-case jamming in particular translates into worst-case model outcomes, thereby necessitating the need for jamming-resilient SFL protocols.
Abstract:Sixth-generation (6G) networks leverage simultaneously transmitting and reflecting reconfigurable intelligent surfaces (STAR-RISs) to overcome the limitations of traditional RISs. STAR-RISs offer 360-degree full-space coverage and optimized transmission and reflection for enhanced network performance and dynamic control of the indoor propagation environment. However, deploying STAR-RISs indoors presents challenges in interference mitigation, power consumption, and real-time configuration. In this work, a novel network architecture utilizing multiple access points (APs) and STAR-RISs is proposed for indoor communication. An optimization problem encompassing user assignment, access point beamforming, and STAR-RIS phase control for reflection and transmission is formulated. The inherent complexity of the formulated problem necessitates a decomposition approach for an efficient solution. This involves tackling different sub-problems with specialized techniques: a many-to-one matching algorithm is employed to assign users to appropriate access points, optimizing resource allocation. To facilitate efficient resource management, access points are grouped using a correlation-based K-means clustering algorithm. Multi-agent deep reinforcement learning (MADRL) is leveraged to optimize the control of the STAR-RIS. Within the proposed MADRL framework, a novel approach is introduced where each decision variable acts as an independent agent, enabling collaborative learning and decision-making. Additionally, the proposed MADRL approach incorporates convex approximation (CA). This technique utilizes suboptimal solutions from successive convex approximation (SCA) to accelerate policy learning for the agents, thereby leading to faster environment adaptation and convergence. Simulations demonstrate significant network utility improvements compared to baseline approaches.
Abstract:The large communication and computation overhead of federated learning (FL) is one of the main challenges facing its practical deployment over resource-constrained clients and systems. In this work, SpaFL: a communication-efficient FL framework is proposed to optimize sparse model structures with low computational overhead. In SpaFL, a trainable threshold is defined for each filter/neuron to prune its all connected parameters, thereby leading to structured sparsity. To optimize the pruning process itself, only thresholds are communicated between a server and clients instead of parameters, thereby learning how to prune. Further, global thresholds are used to update model parameters by extracting aggregated parameter importance. The generalization bound of SpaFL is also derived, thereby proving key insights on the relation between sparsity and performance. Experimental results show that SpaFL improves accuracy while requiring much less communication and computing resources compared to sparse baselines.
Abstract:Collaboration is a key challenge in distributed multi-agent reinforcement learning (MARL) environments. Learning frameworks for these decentralized systems must weigh the benefits of explicit player coordination against the communication overhead and computational cost of sharing local observations and environmental data. Quantum computing has sparked a potential synergy between quantum entanglement and cooperation in multi-agent environments, which could enable more efficient distributed collaboration with minimal information sharing. This relationship is largely unexplored, however, as current state-of-the-art quantum MARL (QMARL) implementations rely on classical information sharing rather than entanglement over a quantum channel as a coordination medium. In contrast, in this paper, a novel framework dubbed entangled QMARL (eQMARL) is proposed. The proposed eQMARL is a distributed actor-critic framework that facilitates cooperation over a quantum channel and eliminates local observation sharing via a quantum entangled split critic. Introducing a quantum critic uniquely spread across the agents allows coupling of local observation encoders through entangled input qubits over a quantum channel, which requires no explicit sharing of local observations and reduces classical communication overhead. Further, agent policies are tuned through joint observation-value function estimation via joint quantum measurements, thereby reducing the centralized computational burden. Experimental results show that eQMARL with ${\Psi}^{+}$ entanglement converges to a cooperative strategy up to $17.8\%$ faster and with a higher overall score compared to split classical and fully centralized classical and quantum baselines. The results also show that eQMARL achieves this performance with a constant factor of $25$-times fewer centralized parameters compared to the split classical baseline.
Abstract:Building future wireless systems that support services like digital twins (DTs) is challenging to achieve through advances to conventional technologies like meta-surfaces. While artificial intelligence (AI)-native networks promise to overcome some limitations of wireless technologies, developments still rely on AI tools like neural networks. Such tools struggle to cope with the non-trivial challenges of the network environment and the growing demands of emerging use cases. In this paper, we revisit the concept of AI-native wireless systems, equipping them with the common sense necessary to transform them into artificial general intelligence (AGI)-native systems. These systems acquire common sense by exploiting different cognitive abilities such as perception, analogy, and reasoning, that enable them to generalize and deal with unforeseen scenarios. Towards developing the components of such a system, we start by showing how the perception module can be built through abstracting real-world elements into generalizable representations. These representations are then used to create a world model, founded on principles of causality and hyper-dimensional (HD) computing, that aligns with intuitive physics and enables analogical reasoning, that define common sense. Then, we explain how methods such as integrated information theory play a role in the proposed intent-driven and objective-driven planning methods that maneuver the AGI-native network to take actions. Next, we discuss how an AGI-native network can enable use cases related to human and autonomous agents: a) analogical reasoning for next-generation DTs, b) synchronized and resilient experiences for cognitive avatars, and c) brain-level metaverse experiences like holographic teleportation. Finally, we conclude with a set of recommendations to build AGI-native systems. Ultimately, we envision this paper as a roadmap for the beyond 6G era.
Abstract:Native jamming mitigation is essential for addressing security and resilience in future 6G wireless networks. In this paper a resilient-by-design framework for effective anti-jamming in MIMO-OFDM wireless communications is introduced. A novel approach that integrates information from wireless sensing services to develop anti-jamming strategies, which do not rely on any prior information or assumptions on the adversary's concrete setup, is explored. To this end, a method that replaces conventional approaches to noise covariance estimation in anti-jamming with a surrogate covariance model is proposed, which instead incorporates sensing information on the jamming signal's directions-of-arrival (DoAs) to provide an effective approximation of the true jamming strategy. The study further focuses on integrating this novel, sensing-assisted approach into the joint optimization of beamforming, user scheduling and power allocation for a multi-user MIMO-OFDM uplink setting. Despite the NP-hard nature of this optimization problem, it can be effectively solved using an iterative water-filling approach. In order to assess the effectiveness of the proposed sensing-assisted jamming mitigation, the corresponding worst-case jamming strategy is investigated, which aims to minimize the total user sum-rate. Experimental simulations eventually affirm the robustness of our approach against both worst-case and barrage jamming, demonstrating its potential to address a wide range of jamming scenarios. Since such an integration of sensing-assisted information is directly implemented on the physical layer, resilience is incorporated preemptively by-design.