Abstract:In this article, we propose the integration of the Holographic Multiple Input Multiple Output (HMIMO) as a transformative solution for next generation Non-Terrestrial Networks (NTNs), addressing key challenges, such as high hardware costs, launch expenses, and energy inefficiency. Traditional NTNs are constrained by the financial and operational limitations posed by bulky, costly antenna systems, alongside the complexities of maintaining effective communications in space. HMIMO offers a novel approach utilizing compact and lightweight arrays of densely packed radiating elements with real-time reconfiguration capabilities, thus, capable of optimizing system performance under dynamic conditions such as varying orbital dynamics and Doppler shifts. By replacing conventional antenna systems with HMIMO, the complexity and cost of satellite manufacturing and launch can be substantially reduced, enabling more streamlined and cost-effective satellite designs. This advancement holds significant potential to democratize space communications, making them accessible to a broader range of stakeholders, including smaller nations and commercial enterprises. Moreover, the inherent capabilities of HMIMO in enhancing energy efficiency, scalability, and adaptability position this technology as a key enabler of new use cases and sustainable satellite operations.
Abstract:The reconfigurable intelligent surface (RIS) technology shows great potential in sixth-generation (6G) terrestrial and non-terrestrial networks (NTNs) since it can effectively change wireless settings to improve connectivity. Extensive research has been conducted on traditional RIS systems with diagonal phase response matrices. The straightforward RIS architecture, while cost-effective, has restricted capabilities in manipulating the wireless channels. The beyond diagonal reconfigurable intelligent surface (BD-RIS) greatly improves control over the wireless environment by utilizing interconnected phase response elements. This work proposes the integration of unmanned aerial vehicle (UAV) communications and BD-RIS in 6G NTNs, which has the potential to further enhance wireless coverage and spectral efficiency. We begin with the preliminaries of UAV communications and then discuss the fundamentals of BD-RIS technology. Subsequently, we discuss the potential of BD-RIS and UAV communications integration. We then proposed a case study based on UAV-mounted transmissive BD-RIS communication. Finally, we highlight future research directions and conclude this work.
Abstract:This work proposes a T-RIS-equipped LEO satellite communication in cognitive radio-enabled integrated NTNs. In the proposed system, a GEO satellite operates as a primary network, and a T-RIS-equipped LEO satellite operates as a secondary IoT network. The objective is to maximize the sum rate of T-RIS-equipped LEO satellite communication using downlink NOMA while ensuring the service quality of GEO cellular users. Our framework simultaneously optimizes the total transmit power of LEO, NOMA power allocation for LEO IoT (LIoT) and T-RIS phase shift design subject to the service quality of LIoT and interference temperature to the primary GEO network. To solve the non-convex sum rate maximization problem, we first adopt successive convex approximations to reduce the complexity of the formulated optimization. Then, we divide the problem into two parts, i.e., power allocation of LEO and phase shift design of T-RIS. The power allocation problem is solved using KKT conditions, while the phase shift problem is handled by Taylor approximation and semidefinite programming. Numerical results are provided to validate the proposed optimization framework.
Abstract:This work investigates the application of Beyond Diagonal Intelligent Reflective Surface (BD-IRS) to enhance THz downlink communication systems, operating in a hybrid: reflective and transmissive mode, to simultaneously provide services to indoor and outdoor users. We propose an optimization framework that jointly optimizes the beamforming vectors and phase shifts in the hybrid reflective/transmissive mode, aiming to maximize the system sum rate. To tackle the challenges in solving the joint design problem, we employ the conjugate gradient method and propose an iterative algorithm that successively optimizes the hybrid beamforming vectors and the phase shifts. Through comprehensive numerical simulations, our findings demonstrate a significant improvement in rate when compared to existing benchmark schemes, including time- and frequency-divided approaches, by approximately $30.5\%$ and $70.28\%$ respectively. This underscores the significant influence of IRS elements on system performance relative to that of base station antennas, highlighting their pivotal role in advancing the communication system efficacy.
Abstract:Intelligent Reconfigurable Surfaces (IRS) are crucial for overcoming challenges in coverage, capacity, and energy efficiency beyond 5G (B5G). The classical IRS architecture, employing a diagonal phase shift matrix, hampers effective passive beamforming manipulation. To unlock its full potential, Beyond Diagonal IRS (BD-IRS or IRS 2.0) emerges as a revolutionary member, transcending limitations of the diagonal IRS. This paper introduces BD-IRS deployed on unmanned aerial vehicles (BD-IRS-UAV) in Mobile Edge Computing (MEC) networks. Here, users offload tasks to the MEC server due to limited resources and finite battery life. The objective is to minimize worst-case system latency by optimizing BD-IRS-UAV deployment, local and edge computational resource allocation, task segmentation, power allocation, and received beamforming vector. The resulting non-convex/non-linear NP-hard optimization problem is intricate, prompting division into two subproblems: 1) BD-IRS-UAV deployment, local and edge computational resources, and task segmentation, and 2) power allocation, received beamforming, and phase shift design. Standard optimization methods efficiently solve each subproblem. Monte Carlo simulations provide numerical results, comparing the proposed BD-IRS-UAV-enabled MEC optimization framework with various benchmarks. Performance evaluations include comparisons with fully-connected and group-connected architectures, single-connected diagonal IRS, and binary offloading, edge computation, fixed computation, and local computation frameworks. Results show a 7.25% lower latency and a 17.77% improvement in data rate with BD-IRS compared to conventional diagonal IRS systems, demonstrating the effectiveness of the proposed optimization framework.
Abstract:Backscatter communication (BC) technology offers sustainable solutions for next-generation Internet-of-Things (IoT) networks, where devices can transmit data by reflecting and adjusting incident radio frequency signals. In parallel to BC, deep reinforcement learning (DRL) has recently emerged as a promising tool to augment intelligence and optimize low-powered IoT devices. This article commences by elucidating the foundational principles underpinning BC systems, subsequently delving into the diverse array of DRL techniques and their respective practical implementations. Subsequently, it investigates potential domains and presents recent advancements in the realm of DRL-BC systems. A use case of RIS-aided non-orthogonal multiple access BC systems leveraging DRL is meticulously examined to highlight its potential. Lastly, this study identifies and investigates salient challenges and proffers prospective avenues for future research endeavors.
Abstract:This paper studies the potential of RIS-integrated NTNs to revolutionize the next-generation connectivity. First, it discusses the fundamentals of RIS technology. Secondly, it delves into reporting the recent advances in RIS-enabled NTNs. Subsequently, it presents a novel framework based on the current state-of-the-art for low earth orbit satellites (LEO) communications, wherein the signal received at the user terminal traverses both a direct link and an RIS link, and the RIS is mounted on a high-altitude platform (HAP) situated within the stratosphere. Finally, the paper concludes by highlighting open challenges and future research directions to revolutionize the realm of RIS-integrated NTNs.
Abstract:Device-to-device (D2D) communications offers high spectral efficiency, low energy consumption and transmission latency. However, one of the main limitations of D2D communications is co-channel interference from underlaying wireless system. Reconfigurable intelligent surfaces (RIS) is a promising technology because it can manipulate the electromagnetic waves in their environment to overcome interference and enhance wireless communications. This paper considers RIS enhanced D2D communications underlaying unmanned aerial vehicle (UAV) networks with non-orthogonal multiple access (NOMA). The objective is to maximize the sum rate of NOMA D2D communications by simultaneously optimizing the power budget of D2D transmitter, NOMA power allocation coefficients of D2D receivers and passive beamforming of RIS while guaranteeing the quality of services of UAV user. Due to non-convexity, the optimization problem is intractable and challenging to handle. Therefore, it is solved in two parts using alternating optimization. Simulation results unviel the performance of the proposed RIS enhanced D2D communications scheme. Results demonstrate that the proposed scheme achieves 15\% and 27\% higher sum rates compared to the fixed power D2D and orthogonal D2D schemes.
Abstract:This paper proposes an energy-efficient RIS-assisted downlink NOMA communication for LEO satellite networks. The proposed framework simultaneously optimizes the transmit power of ground terminals of the LEO satellite and the passive beamforming of RIS while ensuring the quality of services. Due to the nature of the considered system and optimization variables, the energy efficiency maximization problem is non-convex. In practice, obtaining the optimal solution for such problems is very challenging. Therefore, we adopt alternating optimization methods to handle the joint optimization in two steps. In step 1, for any given phase shift vector, we calculate satellite transmit power towards each ground terminal using the Lagrangian dual method. Then, in step 2, given the transmit power, we design passive beamforming for RIS by solving the semi-definite programming. We also compare our solution with a benchmark framework having a fixed phase shift design and a conventional NOMA framework without involving RIS. Numerical results show that the proposed optimization framework achieves 21.47\% and 54.9\% higher energy efficiency compared to the benchmark and conventional frameworks.
Abstract:Unmanned aerial vehicles (UAV) have emerged as a practical solution that provides on-demand services to users in areas where the terrestrial network is non-existent or temporarily unavailable, e.g., due to natural disasters or network congestion. In general, UAVs' user-serving capacity is typically constrained by their limited battery life and the finite communication resources that highly impact their performance. This work considers the orthogonal frequency division multiple access (OFDMA) enabled multiple unmanned aerial vehicles (multi-UAV) communication systems to provide on-demand services. The main aim of this work is to derive an efficient technique for the allocation of radio resources, $3$D placement of UAVs, and user association matrices. To achieve the desired objectives, we decoupled the original joint optimization problem into two sub-problems: (i) $3$D placement and user association and (ii) sum-rate maximization for optimal radio resource allocation, which are solved iteratively. The proposed iterative algorithm is shown via numerical results to achieve fast convergence speed after fewer than 10 iterations. The benefits of the proposed design are demonstrated via superior sum-rate performance compared to existing reference designs. Moreover, results showed that the optimal power and sub-carrier allocation help to mitigate the inter-cell interference that directly impacts the system's performance.