Abstract:The drive toward automating cellular network operations has grown with the increasing complexity of these systems. Despite advancements, full autonomy currently remains out of reach due to reliance on human intervention for modeling network behaviors and defining policies to meet target requirements. Network Digital Twins (NDTs) have shown promise in enhancing network intelligence, but the successful implementation of this technology is constrained by use case-specific architectures, limiting its role in advancing network autonomy. A more capable network intelligence, or "telecommunications brain", is needed to enable seamless, autonomous management of cellular network. Large Language Models (LLMs) have emerged as potential enablers for this vision but face challenges in network modeling, especially in reasoning and handling diverse data types. To address these gaps, we introduce Hermes, a chain of LLM agents that uses "blueprints" for constructing NDT instances through structured and explainable logical steps. Hermes allows automatic, reliable, and accurate network modeling of diverse use cases and configurations, thus marking progress toward fully autonomous network operations.
Abstract:The application of Large Language Models (LLMs) and Retrieval-Augmented Generation (RAG) systems in the telecommunication domain presents unique challenges, primarily due to the complex nature of telecom standard documents and the rapid evolution of the field. The paper introduces Telco-RAG, an open-source RAG framework designed to handle the specific needs of telecommunications standards, particularly 3rd Generation Partnership Project (3GPP) documents. Telco-RAG addresses the critical challenges of implementing a RAG pipeline on highly technical content, paving the way for applying LLMs in telecommunications and offering guidelines for RAG implementation in other technical domains.
Abstract:The increasing interest in Large Language Models (LLMs) within the telecommunications sector underscores their potential to revolutionize operational efficiency. However, the deployment of these sophisticated models is often hampered by their substantial size and computational demands, raising concerns about their viability in resource-constrained environments. Addressing this challenge, recent advancements have seen the emergence of small language models that surprisingly exhibit performance comparable to their larger counterparts in many tasks, such as coding and common-sense reasoning. Phi-2, a compact yet powerful model, exemplifies this new wave of efficient small language models. This paper conducts a comprehensive evaluation of Phi-2's intrinsic understanding of the telecommunications domain. Recognizing the scale-related limitations, we enhance Phi-2's capabilities through a Retrieval-Augmented Generation approach, meticulously integrating an extensive knowledge base specifically curated with telecom standard specifications. The enhanced Phi-2 model demonstrates a profound improvement in accuracy, answering questions about telecom standards with a precision that closely rivals the more resource-intensive GPT-3.5. The paper further explores the refined capabilities of Phi-2 in addressing problem-solving scenarios within the telecom sector, highlighting its potential and limitations.
Abstract:As deep learning models become increasingly large, they pose significant challenges in heterogeneous devices environments. The size of deep learning models makes it difficult to deploy them on low-power or resource-constrained devices, leading to long inference times and high energy consumption. To address these challenges, we propose FlexTrain, a framework that accommodates the diverse storage and computational resources available on different devices during the training phase. FlexTrain enables efficient deployment of deep learning models, while respecting device constraints, minimizing communication costs, and ensuring seamless integration with diverse devices. We demonstrate the effectiveness of FlexTrain on the CIFAR-100 dataset, where a single global model trained with FlexTrain can be easily deployed on heterogeneous devices, saving training time and energy consumption. We also extend FlexTrain to the federated learning setting, showing that our approach outperforms standard federated learning benchmarks on both CIFAR-10 and CIFAR-100 datasets.
Abstract:We introduce TeleQnA, the first benchmark dataset designed to evaluate the knowledge of Large Language Models (LLMs) in telecommunications. Comprising 10,000 questions and answers, this dataset draws from diverse sources, including standards and research articles. This paper outlines the automated question generation framework responsible for creating this dataset, along with how human input was integrated at various stages to ensure the quality of the questions. Afterwards, using the provided dataset, an evaluation is conducted to assess the capabilities of LLMs, including GPT-3.5 and GPT-4. The results highlight that these models struggle with complex standards related questions but exhibit proficiency in addressing general telecom-related inquiries. Additionally, our results showcase how incorporating telecom knowledge context significantly enhances their performance, thus shedding light on the need for a specialized telecom foundation model. Finally, the dataset is shared with active telecom professionals, whose performance is subsequently benchmarked against that of the LLMs. The findings illustrate that LLMs can rival the performance of active professionals in telecom knowledge, thanks to their capacity to process vast amounts of information, underscoring the potential of LLMs within this domain. The dataset has been made publicly accessible on GitHub.
Abstract:Large Language Models (LLMs) have emerged as a transformative force, revolutionizing numerous fields well beyond the conventional domain of Natural Language Processing (NLP) and garnering unprecedented attention. As LLM technology continues to progress, the telecom industry is facing the prospect of its potential impact on its landscape. To elucidate these implications, we delve into the inner workings of LLMs, providing insights into their current capabilities and limitations. We also examine the use cases that can be readily implemented in the telecom industry, streamlining numerous tasks that currently hinder operational efficiency and demand significant manpower and engineering expertise. Furthermore, we uncover essential research directions that deal with the distinctive challenges of utilizing the LLMs within the telecom domain. Addressing these challenges represents a significant stride towards fully harnessing the potential of LLMs and unlocking their capabilities to the fullest extent within the telecom domain.
Abstract:This paper considers an anomaly detection problem in which a detection algorithm assigns anomaly scores to multi-dimensional data points, such as cellular networks' Key Performance Indicators (KPIs). We propose an optimization framework to refine these anomaly scores by leveraging side information in the form of a causality graph between the various features of the data points. The refinement block builds on causality theory and a proposed notion of confidence scores. After motivating our framework, smoothness properties are proved for the ensuing mathematical expressions. Next, equipped with these results, a gradient descent algorithm is proposed, and a proof of its convergence to a stationary point is provided. Our results hold (i) for any causal anomaly detection algorithm and (ii) for any side information in the form of a directed acyclic graph. Numerical results are provided to illustrate the advantage of our proposed framework in dealing with False Positives (FPs) and False Negatives (FNs). Additionally, the effect of the graph's structure on the expected performance advantage and the various trade-offs that take place are analyzed.
Abstract:Data pruning algorithms are commonly used to reduce the memory and computational cost of the optimization process. Recent empirical results reveal that random data pruning remains a strong baseline and outperforms most existing data pruning methods in the high compression regime, i.e., where a fraction of $30\%$ or less of the data is kept. This regime has recently attracted a lot of interest as a result of the role of data pruning in improving the so-called neural scaling laws; in [Sorscher et al.], the authors showed the need for high-quality data pruning algorithms in order to beat the sample power law. In this work, we focus on score-based data pruning algorithms and show theoretically and empirically why such algorithms fail in the high compression regime. We demonstrate ``No Free Lunch" theorems for data pruning and present calibration protocols that enhance the performance of existing pruning algorithms in this high compression regime using randomization.
Abstract:We consider the optimisation of large and shallow neural networks via gradient flow, where the output of each hidden node is scaled by some positive parameter. We focus on the case where the node scalings are non-identical, differing from the classical Neural Tangent Kernel (NTK) parameterisation. We prove that, for large neural networks, with high probability, gradient flow converges to a global minimum AND can learn features, unlike in the NTK regime. We also provide experiments on synthetic and real-world datasets illustrating our theoretical results and showing the benefit of such scaling in terms of pruning and transfer learning.
Abstract:This article studies the infinite-width limit of deep feedforward neural networks whose weights are dependent, and modelled via a mixture of Gaussian distributions. Each hidden node of the network is assigned a nonnegative random variable that controls the variance of the outgoing weights of that node. We make minimal assumptions on these per-node random variables: they are iid and their sum, in each layer, converges to some finite random variable in the infinite-width limit. Under this model, we show that each layer of the infinite-width neural network can be characterised by two simple quantities: a non-negative scalar parameter and a L\'evy measure on the positive reals. If the scalar parameters are strictly positive and the L\'evy measures are trivial at all hidden layers, then one recovers the classical Gaussian process (GP) limit, obtained with iid Gaussian weights. More interestingly, if the L\'evy measure of at least one layer is non-trivial, we obtain a mixture of Gaussian processes (MoGP) in the large-width limit. The behaviour of the neural network in this regime is very different from the GP regime. One obtains correlated outputs, with non-Gaussian distributions, possibly with heavy tails. Additionally, we show that, in this regime, the weights are compressible, and feature learning is possible. Many sparsity-promoting neural network models can be recast as special cases of our approach, and we discuss their infinite-width limits; we also present an asymptotic analysis of the pruning error. We illustrate some of the benefits of the MoGP regime over the GP regime in terms of representation learning and compressibility on simulated, MNIST and Fashion MNIST datasets.