Abstract:In this paper, we consider a novel cellular network for aerial users, which is composed of dedicated base stations (BSs), whose antennas are directed towards aerial users, and traditional terrestrial BSs (TBSs). Besides, the dedicated BSs are deployed on roadside furniture, such as lampposts and traffic lights, to achieve multiple features while occupying less space. Therefore, the locations of dedicated BSs and TBSs are modeled by a Poisson-line-Cox-process (PLCP) and Poisson point process (PPP), respectively. For the proposed network, we first compute the aerial coverage probability and show that the deployment of dedicated BSs improves the coverage probability in both high dense areas and rural areas. We then consider a cellular-connected UAV that has a flying mission and optimize its trajectory to maximize the minimal achievable signal-to-interference-plus-noise ratio (SINR) (Max-Min SINR). To obtain the Max-Min SINR and minimal time trajectory that satisfies the Max-Min SINR, we proposed two algorithms that are practical in large-scale networks. Finally, our results show that the optimal density of dedicated BSs which maximizes Max-Min SINR decreases with the increase of the road densities.
Abstract:Using drones for communications and transportation is drawing great attention in many practical scenarios, such as package delivery and providing additional wireless coverage. However, the increasing demand for UAVs from industry and academia will cause aerial traffic conflicts in the future. This, in turn, motivates the idea of this paper: multi-purpose UAVs, acting as aerial wireless data relays and means of aerial transportation simultaneously, to deliver packages and data at the same time. This paper aims to analyze the feasibility of using drones to collect and deliver data from the Internet of Things (IoT) devices to terrestrial base stations (TBSs) while delivering packages from warehouses to residential areas. We propose an algorithm to optimize the trajectory of UAVs to maximize the size of collected/delivered data while minimizing the total round trip time subject to the limited onboard battery of UAVs. Specifically, we use tools from stochastic geometry to model the locations of the IoT clusters and the TBSs and study the system performance with respect to energy efficiency, average size of collected/delivered data, and package delivery time. Our numerical results reveal that multi-functional UAVs have great potential to enhance the efficiency of both communication and transportation networks.