Abstract:Optimization is crucial for MEC networks to function efficiently and reliably, most of which are NP-hard and lack efficient approximation algorithms. This leads to a paucity of optimal solution, constraining the effectiveness of conventional deep learning approaches. Most existing learning-based methods necessitate extensive optimal data and fail to exploit the potential benefits of suboptimal data that can be obtained with greater efficiency and effectiveness. Taking the multi-server multi-user computation offloading (MSCO) problem, which is widely observed in systems like Internet-of-Vehicles (IoV) and Unmanned Aerial Vehicle (UAV) networks, as a concrete scenario, we present a Graph Diffusion-based Solution Generation (GDSG) method. This approach is designed to work with suboptimal datasets while converging to the optimal solution large probably. We transform the optimization issue into distribution-learning and offer a clear explanation of learning from suboptimal training datasets. We build GDSG as a multi-task diffusion model utilizing a Graph Neural Network (GNN) to acquire the distribution of high-quality solutions. We use a simple and efficient heuristic approach to obtain a sufficient amount of training data composed entirely of suboptimal solutions. In our implementation, we enhance the backbone GNN and achieve improved generalization. GDSG also reaches nearly 100\% task orthogonality, ensuring no interference between the discrete and continuous generation tasks. We further reveal that this orthogonality arises from the diffusion-related training loss, rather than the neural network architecture itself. The experiments demonstrate that GDSG surpasses other benchmark methods on both the optimal and suboptimal training datasets. The MSCO datasets has open-sourced at http://ieee-dataport.org/13824, as well as the GDSG algorithm codes at https://github.com/qiyu3816/GDSG.
Abstract:Optimization is crucial for MEC networks to function efficiently and reliably, most of which are NP-hard and lack efficient approximation algorithms. This leads to a paucity of optimal solution, constraining the effectiveness of conventional deep learning approaches. Most existing learning-based methods necessitate extensive optimal data and fail to exploit the potential benefits of suboptimal data that can be obtained with greater efficiency and effectiveness. Taking the multi-server multi-user computation offloading (MSCO) problem, which is widely observed in systems like Internet-of-Vehicles (IoV) and Unmanned Aerial Vehicle (UAV) networks, as a concrete scenario, we present a Graph Diffusion-based Solution Generation (GDSG) method. This approach is designed to work with suboptimal datasets while converging to the optimal solution large probably. We transform the optimization issue into distribution-learning and offer a clear explanation of learning from suboptimal training datasets. We build GDSG as a multi-task diffusion model utilizing a Graph Neural Network (GNN) to acquire the distribution of high-quality solutions. We use a simple and efficient heuristic approach to obtain a sufficient amount of training data composed entirely of suboptimal solutions. In our implementation, we enhance the backbone GNN and achieve improved generalization. GDSG also reaches nearly 100\% task orthogonality, ensuring no interference between the discrete and continuous generation tasks. We further reveal that this orthogonality arises from the diffusion-related training loss, rather than the neural network architecture itself. The experiments demonstrate that GDSG surpasses other benchmark methods on both the optimal and suboptimal training datasets. The MSCO datasets has open-sourced at http://ieee-dataport.org/13824, as well as the GDSG algorithm codes at https://github.com/qiyu3816/GDSG.
Abstract:Network optimization is a fundamental challenge in the Internet of Things (IoT) network, often characterized by complex features that make it difficult to solve these problems. Recently, generative diffusion models (GDMs) have emerged as a promising new approach to network optimization, with the potential to directly address these optimization problems. However, the application of GDMs in this field is still in its early stages, and there is a noticeable lack of theoretical research and empirical findings. In this study, we first explore the intrinsic characteristics of generative models. Next, we provide a concise theoretical proof and intuitive demonstration of the advantages of generative models over discriminative models in network optimization. Based on this exploration, we implement GDMs as optimizers aimed at learning high-quality solution distributions for given inputs, sampling from these distributions during inference to approximate or achieve optimal solutions. Specifically, we utilize denoising diffusion probabilistic models (DDPMs) and employ a classifier-free guidance mechanism to manage conditional guidance based on input parameters. We conduct extensive experiments across three challenging network optimization problems. By investigating various model configurations and the principles of GDMs as optimizers, we demonstrate the ability to overcome prediction errors and validate the convergence of generated solutions to optimal solutions.We provide code and data at https://github.com/qiyu3816/DiffSG.
Abstract:Diffusion generative models, famous for their performance in image generation, are popular in various cross-domain applications. However, their use in the communication community has been mostly limited to auxiliary tasks like data modeling and feature extraction. These models hold greater promise for fundamental problems in network optimization compared to traditional machine learning methods. Discriminative deep learning often falls short due to its single-step input-output mapping and lack of global awareness of the solution space, especially given the complexity of network optimization's objective functions. In contrast, diffusion generative models can consider a broader range of solutions and exhibit stronger generalization by learning parameters that describe the distribution of the underlying solution space, with higher probabilities assigned to better solutions. We propose a new framework Diffusion Model-based Solution Generation (DiffSG), which leverages the intrinsic distribution learning capabilities of diffusion generative models to learn high-quality solution distributions based on given inputs. The optimal solution within this distribution is highly probable, allowing it to be effectively reached through repeated sampling. We validate the performance of DiffSG on several typical network optimization problems, including mixed-integer non-linear programming, convex optimization, and hierarchical non-convex optimization. Our results show that DiffSG outperforms existing baselines. In summary, we demonstrate the potential of diffusion generative models in tackling complex network optimization problems and outline a promising path for their broader application in the communication community.
Abstract:The increasing demand for communication is degrading the electromagnetic (EM) transmission environment due to severe EM interference, significantly reducing the efficiency of the radio frequency (RF) spectrum. Metasurfaces, a promising technology for controlling desired EM waves, have recently received significant attention from both academia and industry. However, the potential impact of out-of-band signals has been largely overlooked, leading to RF spectrum pollution and degradation of wireless transmissions. To address this issue, we propose a novel surface structure called the Filtering Reconfigurable Intelligent Computational Surface (FRICS). We introduce two types of FRICS structures: one that dynamically reflects resonance band signals through a tunable spatial filter while absorbing out-of-band signals using metamaterials and the other one that dynamically amplifies in-band signals using computational metamaterials while reflecting out-of-band signals. To evaluate the performance of FRICS, we implement it in device-to-device (D2D) communication and vehicular-to-everything (V2X) scenarios. The experiments demonstrate the superiority of FRICS in signal-to-interference-noise ratio (SINR) and energy efficiency (EE). Finally, we discuss the critical challenges faced and promising techniques for implementing FRICS in future wireless systems.
Abstract:With the rapidly increasing number of bandwidth-intensive terminals capable of intelligent computing and communication, such as smart devices equipped with shallow neural network models, the complexity of multiple access for these intelligent terminals is increasing due to the dynamic network environment and ubiquitous connectivity in 6G systems. Traditional multiple access (MA) design and optimization methods are gradually losing ground to artificial intelligence (AI) techniques that have proven their superiority in handling complexity. AI-empowered MA and its optimization strategies aimed at achieving high Quality-of-Service (QoS) are attracting more attention, especially in the area of latency-sensitive applications in 6G systems. In this work, we aim to: 1) present the development and comparative evaluation of AI-enabled MA; 2) provide a timely survey focusing on spectrum sensing, protocol design, and optimization for AI-empowered MA; and 3) explore the potential use cases of AI-empowered MA in the typical application scenarios within 6G systems. Specifically, we first present a unified framework of AI-empowered MA for 6G systems by incorporating various promising machine learning techniques in spectrum sensing, resource allocation, MA protocol design, and optimization. We then introduce AI-empowered MA spectrum sensing related to spectrum sharing and spectrum interference management. Next, we discuss the AI-empowered MA protocol designs and implementation methods by reviewing and comparing the state-of-the-art, and we further explore the optimization algorithms related to dynamic resource management, parameter adjustment, and access scheme switching. Finally, we discuss the current challenges, point out open issues, and outline potential future research directions in this field.
Abstract:In this paper, we focus on improving autonomous driving safety via task offloading from cellular vehicles (CVs), using vehicle-to-infrastructure (V2I) links, to an multi-access edge computing (MEC) server. Considering that the frequencies used for V2I links can be reused for vehicle-to-vehicle (V2V) communications to improve spectrum utilization, the receiver of each V2I link may suffer from severe interference, causing outages in the task offloading process. To tackle this issue, we propose the deployment of a reconfigurable intelligent computational surface (RICS) to enable, not only V2I reflective links, but also interference cancellation at the V2V links exploiting the computational capability of its metamaterials. We devise a joint optimization formulation for the task offloading ratio between the CVs and the MEC server, the spectrum sharing strategy between V2V and V2I communications, as well as the RICS reflection and refraction matrices, with the objective to maximize a safety-based autonomous driving task. Due to the non-convexity of the problem and the coupling among its free variables, we transform it into a more tractable equivalent form, which is then decomposed into three sub-problems and solved via an alternate approximation method. Our simulation results demonstrate the effectiveness of the proposed RICS optimization in improving the safety in autonomous driving networks.
Abstract:The envisioned wireless networks of the future entail the provisioning of massive numbers of connections, heterogeneous data traffic, ultra-high spectral efficiency, and low latency services. This vision is spurring research activities focused on defining a next generation multiple access (NGMA) protocol that can accommodate massive numbers of users in different resource blocks, thereby, achieving higher spectral efficiency and increased connectivity compared to conventional multiple access schemes. In this article, we present a multiple access scheme for NGMA in wireless communication systems assisted by multiple reconfigurable intelligent surfaces (RISs). In this regard, considering the practical scenario of static users operating together with mobile ones, we first study the interplay of the design of NGMA schemes and RIS phase configuration in terms of efficiency and complexity. Based on this, we then propose a multiple access framework for RIS-assisted communication systems, and we also design a medium access control (MAC) protocol incorporating RISs. In addition, we give a detailed performance analysis of the designed RIS-assisted MAC protocol. Our extensive simulation results demonstrate that the proposed MAC design outperforms the benchmarks in terms of system throughput and access fairness, and also reveal a trade-off relationship between the system throughput and fairness.
Abstract:Computation offloading has become a popular solution to support computationally intensive and latency-sensitive applications by transferring computing tasks to mobile edge servers (MESs) for execution, which is known as mobile/multi-access edge computing (MEC). To improve the MEC performance, it is required to design an optimal offloading strategy that includes offloading decision (i.e., whether offloading or not) and computational resource allocation of MEC. The design can be formulated as a mixed-integer nonlinear programming (MINLP) problem, which is generally NP-hard and its effective solution can be obtained by performing online inference through a well-trained deep neural network (DNN) model. However, when the system environments change dynamically, the DNN model may lose efficacy due to the drift of input parameters, thereby decreasing the generalization ability of the DNN model. To address this unique challenge, in this paper, we propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs). Specifically, the shared backbone will be invariant during the PHs training and the inferred results will be ensembled, thereby significantly reducing the required training overhead and improving the inference performance. As a result, the joint optimization problem for offloading decision and resource allocation can be efficiently solved even in a time-varying wireless environment. Experimental results show that the proposed MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
Abstract:The envisioned sixth-generation (6G) of wireless networks will involve an intelligent integration of communications and computing, thereby meeting the urgent demands of diverse applications. To realize the concept of the smart radio environment, reconfigurable intelligent surfaces (RISs) are a promising technology for offering programmable propagation of impinging electromagnetic signals via external control. However, the purely reflective nature of conventional RISs induces significant challenges in supporting computation-based applications, e.g., wave-based calculation and signal processing. To fulfil future communication and computing requirements, new materials are needed to complement the existing technologies of metasurfaces, enabling further diversification of electronics and their applications. In this event, we introduce the concept of reconfigurable intelligent computational surface (RICS), which is composed of two reconfigurable multifunctional layers: the `reconfigurable beamforming layer' which is responsible for tunable signal reflection, absorption, and refraction, and the `intelligence computation layer' that concentrates on metamaterials-based computing. By exploring the recent trends on computational metamaterials, RICSs have the potential to make joint communication and computation a reality. We further demonstrate two typical applications of RICSs for performing wireless spectrum sensing and secrecy signal processing. Future research challenges arising from the design and operation of RICSs are finally highlighted.