Abstract:Autoregressive transformers have revolutionized high-fidelity image generation. One crucial ingredient lies in the tokenizer, which compresses high-resolution image patches into manageable discrete tokens with a scanning or hierarchical order suitable for large language models. Extending these tokenizers to 3D generation, however, presents a significant challenge: unlike image patches that naturally exhibit spatial sequence and multi-scale relationships, 3D data lacks an inherent order, making it difficult to compress into fewer tokens while preserving structural details. To address this, we introduce the Variational Tokenizer (VAT), which transforms unordered 3D data into compact latent tokens with an implicit hierarchy, suited for efficient and high-fidelity coarse-to-fine autoregressive modeling. VAT begins with an in-context transformer, which compress numerous unordered 3D features into a reduced token set with minimal information loss. This latent space is then mapped to a Gaussian distribution for residual quantization, with token counts progressively increasing across scales. In this way, tokens at different scales naturally establish the interconnections by allocating themselves into different subspaces within the same Gaussian distribution, facilitating discrete modeling of token relationships across scales. During the decoding phase, a high-resolution triplane is utilized to convert these compact latent tokens into detailed 3D shapes. Extensive experiments demonstrate that VAT enables scalable and efficient 3D generation, outperforming existing methods in quality, efficiency, and generalization. Remarkably, VAT achieves up to a 250x compression, reducing a 1MB mesh to just 3.9KB with a 96% F-score, and can further compress to 256 int8 tokens, achieving a 2000x reduction while maintaining a 92% F-score.
Abstract:With the rapid evolution of 3D generation algorithms, the cost of producing 3D humanoid character models has plummeted, yet the field is impeded by the lack of a comprehensive dataset for automatic rigging, which is a pivotal step in character animation. Addressing this gap, we present HumanRig, the first large-scale dataset specifically designed for 3D humanoid character rigging, encompassing 11,434 meticulously curated T-posed meshes adhered to a uniform skeleton topology. Capitalizing on this dataset, we introduce an innovative, data-driven automatic rigging framework, which overcomes the limitations of GNN-based methods in handling complex AI-generated meshes. Our approach integrates a Prior-Guided Skeleton Estimator (PGSE) module, which uses 2D skeleton joints to provide a preliminary 3D skeleton, and a Mesh-Skeleton Mutual Attention Network (MSMAN) that fuses skeleton features with 3D mesh features extracted by a U-shaped point transformer. This enables a coarse-to-fine 3D skeleton joint regression and a robust skinning estimation, surpassing previous methods in quality and versatility. This work not only remedies the dataset deficiency in rigging research but also propels the animation industry towards more efficient and automated character rigging pipelines.
Abstract:Autoregressive transformers have revolutionized generative models in language processing and shown substantial promise in image and video generation. However, these models face significant challenges when extended to 3D generation tasks due to their reliance on next-token prediction to learn token sequences, which is incompatible with the unordered nature of 3D data. Instead of imposing an artificial order on 3D data, in this paper, we introduce G3PT, a scalable coarse-to-fine 3D generative model utilizing a cross-scale querying transformer. The key is to map point-based 3D data into discrete tokens with different levels of detail, naturally establishing a sequential relationship between different levels suitable for autoregressive modeling. Additionally, the cross-scale querying transformer connects tokens globally across different levels of detail without requiring an ordered sequence. Benefiting from this approach, G3PT features a versatile 3D generation pipeline that effortlessly supports diverse conditional structures, enabling the generation of 3D shapes from various types of conditions. Extensive experiments demonstrate that G3PT achieves superior generation quality and generalization ability compared to previous 3D generation methods. Most importantly, for the first time in 3D generation, scaling up G3PT reveals distinct power-law scaling behaviors.
Abstract:Generating realistic animated videos from static images is an important area of research in computer vision. Methods based on physical simulation and motion prediction have achieved notable advances, but they are often limited to specific object textures and motion trajectories, failing to exhibit highly complex environments and physical dynamics. In this paper, we introduce an open-domain controllable image animation method using motion priors with video diffusion models. Our method achieves precise control over the direction and speed of motion in the movable region by extracting the motion field information from videos and learning moving trajectories and strengths. Current pretrained video generation models are typically limited to producing very short videos, typically less than 30 frames. In contrast, we propose an efficient long-duration video generation method based on noise reschedule specifically tailored for image animation tasks, facilitating the creation of videos over 100 frames in length while maintaining consistency in content scenery and motion coordination. Specifically, we decompose the denoise process into two distinct phases: the shaping of scene contours and the refining of motion details. Then we reschedule the noise to control the generated frame sequences maintaining long-distance noise correlation. We conducted extensive experiments with 10 baselines, encompassing both commercial tools and academic methodologies, which demonstrate the superiority of our method. Our project page: https://wangqiang9.github.io/Controllable.github.io/
Abstract:We present a real-time LiDAR-Inertial-Camera SLAM system with 3D Gaussian Splatting as the mapping backend. Leveraging robust pose estimates from our LiDAR-Inertial-Camera odometry, Coco-LIC, an incremental photo-realistic mapping system is proposed in this paper. We initialize 3D Gaussians from colorized LiDAR points and optimize them using differentiable rendering powered by 3D Gaussian Splatting. Meticulously designed strategies are employed to incrementally expand the Gaussian map and adaptively control its density, ensuring high-quality mapping with real-time capability. Experiments conducted in diverse scenarios demonstrate the superior performance of our method compared to existing radiance-field-based SLAM systems.
Abstract:Neural radiance fields~(NeRF) have recently been applied to render large-scale scenes. However, their limited model capacity typically results in blurred rendering results. Existing large-scale NeRFs primarily address this limitation by partitioning the scene into blocks, which are subsequently handled by separate sub-NeRFs. These sub-NeRFs, trained from scratch and processed independently, lead to inconsistencies in geometry and appearance across the scene. Consequently, the rendering quality fails to exhibit significant improvement despite the expansion of model capacity. In this work, we present global-guided focal neural radiance field (GF-NeRF) that achieves high-fidelity rendering of large-scale scenes. Our proposed GF-NeRF utilizes a two-stage (Global and Focal) architecture and a global-guided training strategy. The global stage obtains a continuous representation of the entire scene while the focal stage decomposes the scene into multiple blocks and further processes them with distinct sub-encoders. Leveraging this two-stage architecture, sub-encoders only need fine-tuning based on the global encoder, thus reducing training complexity in the focal stage while maintaining scene-wide consistency. Spatial information and error information from the global stage also benefit the sub-encoders to focus on crucial areas and effectively capture more details of large-scale scenes. Notably, our approach does not rely on any prior knowledge about the target scene, attributing GF-NeRF adaptable to various large-scale scene types, including street-view and aerial-view scenes. We demonstrate that our method achieves high-fidelity, natural rendering results on various types of large-scale datasets. Our project page: https://shaomq2187.github.io/GF-NeRF/