Abstract:We introduce Diff-Tracker, a novel approach for the challenging unsupervised visual tracking task leveraging the pre-trained text-to-image diffusion model. Our main idea is to leverage the rich knowledge encapsulated within the pre-trained diffusion model, such as the understanding of image semantics and structural information, to address unsupervised visual tracking. To this end, we design an initial prompt learner to enable the diffusion model to recognize the tracking target by learning a prompt representing the target. Furthermore, to facilitate dynamic adaptation of the prompt to the target's movements, we propose an online prompt updater. Extensive experiments on five benchmark datasets demonstrate the effectiveness of our proposed method, which also achieves state-of-the-art performance.
Abstract:Text-to-Image (T2I) models have raised security concerns due to their potential to generate inappropriate or harmful images. In this paper, we propose UPAM, a novel framework that investigates the robustness of T2I models from the attack perspective. Unlike most existing attack methods that focus on deceiving textual defenses, UPAM aims to deceive both textual and visual defenses in T2I models. UPAM enables gradient-based optimization, offering greater effectiveness and efficiency than previous methods. Given that T2I models might not return results due to defense mechanisms, we introduce a Sphere-Probing Learning (SPL) scheme to support gradient optimization even when no results are returned. Additionally, we devise a Semantic-Enhancing Learning (SEL) scheme to finetune UPAM for generating target-aligned images. Our framework also ensures attack stealthiness. Extensive experiments demonstrate UPAM's effectiveness and efficiency.
Abstract:Unsupervised Domain Adaptation (UDA) is quite challenging due to the large distribution discrepancy between the source domain and the target domain. Inspired by diffusion models which have strong capability to gradually convert data distributions across a large gap, we consider to explore the diffusion technique to handle the challenging UDA task. However, using diffusion models to convert data distribution across different domains is a non-trivial problem as the standard diffusion models generally perform conversion from the Gaussian distribution instead of from a specific domain distribution. Besides, during the conversion, the semantics of the source-domain data needs to be preserved for classification in the target domain. To tackle these problems, we propose a novel Domain-Adaptive Diffusion (DAD) module accompanied by a Mutual Learning Strategy (MLS), which can gradually convert data distribution from the source domain to the target domain while enabling the classification model to learn along the domain transition process. Consequently, our method successfully eases the challenge of UDA by decomposing the large domain gap into small ones and gradually enhancing the capacity of classification model to finally adapt to the target domain. Our method outperforms the current state-of-the-arts by a large margin on three widely used UDA datasets.
Abstract:Translating images from a source domain to a target domain for learning target models is one of the most common strategies in domain adaptive semantic segmentation (DASS). However, existing methods still struggle to preserve semantically-consistent local details between the original and translated images. In this work, we present an innovative approach that addresses this challenge by using source-domain labels as explicit guidance during image translation. Concretely, we formulate cross-domain image translation as a denoising diffusion process and utilize a novel Semantic Gradient Guidance (SGG) method to constrain the translation process, conditioning it on the pixel-wise source labels. Additionally, a Progressive Translation Learning (PTL) strategy is devised to enable the SGG method to work reliably across domains with large gaps. Extensive experiments demonstrate the superiority of our approach over state-of-the-art methods.
Abstract:Deep models trained on source domain lack generalization when evaluated on unseen target domains with different data distributions. The problem becomes even more pronounced when we have no access to target domain samples for adaptation. In this paper, we address domain generalized semantic segmentation, where a segmentation model is trained to be domain-invariant without using any target domain data. Existing approaches to tackle this problem standardize data into a unified distribution. We argue that while such a standardization promotes global normalization, the resulting features are not discriminative enough to get clear segmentation boundaries. To enhance separation between categories while simultaneously promoting domain invariance, we propose a framework including two novel modules: Semantic-Aware Normalization (SAN) and Semantic-Aware Whitening (SAW). Specifically, SAN focuses on category-level center alignment between features from different image styles, while SAW enforces distributed alignment for the already center-aligned features. With the help of SAN and SAW, we encourage both intra-category compactness and inter-category separability. We validate our approach through extensive experiments on widely-used datasets (i.e. GTAV, SYNTHIA, Cityscapes, Mapillary and BDDS). Our approach shows significant improvements over existing state-of-the-art on various backbone networks. Code is available at https://github.com/leolyj/SAN-SAW
Abstract:Domain adaptation is critical for success when confronting with the lack of annotations in a new domain. As the huge time consumption of labeling process on 3D point cloud, domain adaptation for 3D semantic segmentation is of great expectation. With the rise of multi-modal datasets, large amount of 2D images are accessible besides 3D point clouds. In light of this, we propose to further leverage 2D data for 3D domain adaptation by intra and inter domain cross modal learning. As for intra-domain cross modal learning, most existing works sample the dense 2D pixel-wise features into the same size with sparse 3D point-wise features, resulting in the abandon of numerous useful 2D features. To address this problem, we propose Dynamic sparse-to-dense Cross Modal Learning (DsCML) to increase the sufficiency of multi-modality information interaction for domain adaptation. For inter-domain cross modal learning, we further advance Cross Modal Adversarial Learning (CMAL) on 2D and 3D data which contains different semantic content aiming to promote high-level modal complementarity. We evaluate our model under various multi-modality domain adaptation settings including day-to-night, country-to-country and dataset-to-dataset, brings large improvements over both uni-modal and multi-modal domain adaptation methods on all settings.
Abstract:Semantic segmentation is a crucial image understanding task, where each pixel of image is categorized into a corresponding label. Since the pixel-wise labeling for ground-truth is tedious and labor intensive, in practical applications, many works exploit the synthetic images to train the model for real-word image semantic segmentation, i.e., Synthetic-to-Real Semantic Segmentation (SRSS). However, Deep Convolutional Neural Networks (CNNs) trained on the source synthetic data may not generalize well to the target real-world data. In this work, we propose two simple yet effective texture randomization mechanisms, Global Texture Randomization (GTR) and Local Texture Randomization (LTR), for Domain Generalization based SRSS. GTR is proposed to randomize the texture of source images into diverse unreal texture styles. It aims to alleviate the reliance of the network on texture while promoting the learning of the domain-invariant cues. In addition, we find the texture difference is not always occurred in entire image and may only appear in some local areas. Therefore, we further propose a LTR mechanism to generate diverse local regions for partially stylizing the source images. Finally, we implement a regularization of Consistency between GTR and LTR (CGL) aiming to harmonize the two proposed mechanisms during training. Extensive experiments on five publicly available datasets (i.e., GTA5, SYNTHIA, Cityscapes, BDDS and Mapillary) with various SRSS settings (i.e., GTA5/SYNTHIA to Cityscapes/BDDS/Mapillary) demonstrate that the proposed method is superior to the state-of-the-art methods for domain generalization based SRSS.
Abstract:Street Scene Change Detection (SSCD) aims to locate the changed regions between a given street-view image pair captured at different times, which is an important yet challenging task in the computer vision community. The intuitive way to solve the SSCD task is to fuse the extracted image feature pairs, and then directly measure the dissimilarity parts for producing a change map. Therefore, the key for the SSCD task is to design an effective feature fusion method that can improve the accuracy of the corresponding change maps. To this end, we present a novel Hierarchical Paired Channel Fusion Network (HPCFNet), which utilizes the adaptive fusion of paired feature channels. Specifically, the features of a given image pair are jointly extracted by a Siamese Convolutional Neural Network (SCNN) and hierarchically combined by exploring the fusion of channel pairs at multiple feature levels. In addition, based on the observation that the distribution of scene changes is diverse, we further propose a Multi-Part Feature Learning (MPFL) strategy to detect diverse changes. Based on the MPFL strategy, our framework achieves a novel approach to adapt to the scale and location diversities of the scene change regions. Extensive experiments on three public datasets (i.e., PCD, VL-CMU-CD and CDnet2014) demonstrate that the proposed framework achieves superior performance which outperforms other state-of-the-art methods with a considerable margin.